A microsphere-homogenized strain gradient elasticity model for polymers

Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2024-12, Vol.235 (12), p.7583-7603
Hauptverfasser: Li, Ruizhi, Li, Li, Jiang, Yiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7603
container_issue 12
container_start_page 7583
container_title Acta mechanica
container_volume 235
creator Li, Ruizhi
Li, Li
Jiang, Yiyuan
description Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is employed to derive a physics-based strain gradient continuum, where the strain gradient term relies on the concrete geometric structure. This is achieved by connecting the stretch fluctuation field of polymer chains with the strain gradient field through an asymptotic homogenization method. This homogenization method first provides the construction of the Helmholtz free energy density for the microsphere model and then develops the transformation of the free energy density to that strain gradient continuum. Applying the proposed strain gradient continuum to the Euler–Bernoulli beam, the size-dependent effects of the free energy, the bending rigidity, and deflection are investigated in detail. This homogenization method bridges the gap between discrete and continuous polymer mediums. Furthermore, the continuum model retains high-order strain gradient information. This correlation facilitates the application of polymers in nanocomposites, enabling the creation of groundbreaking materials through artificial design.
doi_str_mv 10.1007/s00707-024-04115-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133856381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133856381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-1f900fd7ce4a2ebab0918f18c7bf4565a34036ac43a86e69cb654a5f444f6c113</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZJk3b47L4Dxa86Dmk6WS3S9vUpHtYP71dK3jzMsPAe294P8ZuEe4RIH-I04CcQyo5SMSMqzO2QIUlV6XIz9kCAJBnZQ6X7CrG_XSlucQFe14lXWODj8OOAvGd7_yW-uaL6iSOwTR9sg2mbqgfE2pNHBvbjMek8zW1ifMhGXx77CjEa3bhTBvp5ncv2cfT4_v6hW_enl_Xqw23KcDI0ZUArs4tSZNSZSoosXBY2LxyMlOZERKEMlYKUyhSpa1UJk3mpJROWUSxZHdz7hD854HiqPf-EPrppRYoRJEpUZxU6aw6NYuBnB5C05lw1Aj6BEzPwPQETP8A02oyidkUJ3G_pfAX_Y_rG0Y9blw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133856381</pqid></control><display><type>article</type><title>A microsphere-homogenized strain gradient elasticity model for polymers</title><source>SpringerLink Journals</source><creator>Li, Ruizhi ; Li, Li ; Jiang, Yiyuan</creator><creatorcontrib>Li, Ruizhi ; Li, Li ; Jiang, Yiyuan</creatorcontrib><description>Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is employed to derive a physics-based strain gradient continuum, where the strain gradient term relies on the concrete geometric structure. This is achieved by connecting the stretch fluctuation field of polymer chains with the strain gradient field through an asymptotic homogenization method. This homogenization method first provides the construction of the Helmholtz free energy density for the microsphere model and then develops the transformation of the free energy density to that strain gradient continuum. Applying the proposed strain gradient continuum to the Euler–Bernoulli beam, the size-dependent effects of the free energy, the bending rigidity, and deflection are investigated in detail. This homogenization method bridges the gap between discrete and continuous polymer mediums. Furthermore, the continuum model retains high-order strain gradient information. This correlation facilitates the application of polymers in nanocomposites, enabling the creation of groundbreaking materials through artificial design.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-024-04115-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Asymptotic methods ; Chains (polymeric) ; Classical and Continuum Physics ; Continuous bridges ; Continuum mechanics ; Continuum modeling ; Control ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Euler-Bernoulli beams ; Free energy ; Heat and Mass Transfer ; Homogenization ; Nanocomposites ; Original Paper ; Polymers ; Solid Mechanics ; Strain analysis ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2024-12, Vol.235 (12), p.7583-7603</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-1f900fd7ce4a2ebab0918f18c7bf4565a34036ac43a86e69cb654a5f444f6c113</cites><orcidid>0000-0002-9805-3957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-024-04115-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-024-04115-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Ruizhi</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Jiang, Yiyuan</creatorcontrib><title>A microsphere-homogenized strain gradient elasticity model for polymers</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is employed to derive a physics-based strain gradient continuum, where the strain gradient term relies on the concrete geometric structure. This is achieved by connecting the stretch fluctuation field of polymer chains with the strain gradient field through an asymptotic homogenization method. This homogenization method first provides the construction of the Helmholtz free energy density for the microsphere model and then develops the transformation of the free energy density to that strain gradient continuum. Applying the proposed strain gradient continuum to the Euler–Bernoulli beam, the size-dependent effects of the free energy, the bending rigidity, and deflection are investigated in detail. This homogenization method bridges the gap between discrete and continuous polymer mediums. Furthermore, the continuum model retains high-order strain gradient information. This correlation facilitates the application of polymers in nanocomposites, enabling the creation of groundbreaking materials through artificial design.</description><subject>Asymptotic methods</subject><subject>Chains (polymeric)</subject><subject>Classical and Continuum Physics</subject><subject>Continuous bridges</subject><subject>Continuum mechanics</subject><subject>Continuum modeling</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Euler-Bernoulli beams</subject><subject>Free energy</subject><subject>Heat and Mass Transfer</subject><subject>Homogenization</subject><subject>Nanocomposites</subject><subject>Original Paper</subject><subject>Polymers</subject><subject>Solid Mechanics</subject><subject>Strain analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZJk3b47L4Dxa86Dmk6WS3S9vUpHtYP71dK3jzMsPAe294P8ZuEe4RIH-I04CcQyo5SMSMqzO2QIUlV6XIz9kCAJBnZQ6X7CrG_XSlucQFe14lXWODj8OOAvGd7_yW-uaL6iSOwTR9sg2mbqgfE2pNHBvbjMek8zW1ifMhGXx77CjEa3bhTBvp5ncv2cfT4_v6hW_enl_Xqw23KcDI0ZUArs4tSZNSZSoosXBY2LxyMlOZERKEMlYKUyhSpa1UJk3mpJROWUSxZHdz7hD854HiqPf-EPrppRYoRJEpUZxU6aw6NYuBnB5C05lw1Aj6BEzPwPQETP8A02oyidkUJ3G_pfAX_Y_rG0Y9blw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Ruizhi</creator><creator>Li, Li</creator><creator>Jiang, Yiyuan</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9805-3957</orcidid></search><sort><creationdate>20241201</creationdate><title>A microsphere-homogenized strain gradient elasticity model for polymers</title><author>Li, Ruizhi ; Li, Li ; Jiang, Yiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-1f900fd7ce4a2ebab0918f18c7bf4565a34036ac43a86e69cb654a5f444f6c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Chains (polymeric)</topic><topic>Classical and Continuum Physics</topic><topic>Continuous bridges</topic><topic>Continuum mechanics</topic><topic>Continuum modeling</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Euler-Bernoulli beams</topic><topic>Free energy</topic><topic>Heat and Mass Transfer</topic><topic>Homogenization</topic><topic>Nanocomposites</topic><topic>Original Paper</topic><topic>Polymers</topic><topic>Solid Mechanics</topic><topic>Strain analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruizhi</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Jiang, Yiyuan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruizhi</au><au>Li, Li</au><au>Jiang, Yiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microsphere-homogenized strain gradient elasticity model for polymers</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>235</volume><issue>12</issue><spage>7583</spage><epage>7603</epage><pages>7583-7603</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is employed to derive a physics-based strain gradient continuum, where the strain gradient term relies on the concrete geometric structure. This is achieved by connecting the stretch fluctuation field of polymer chains with the strain gradient field through an asymptotic homogenization method. This homogenization method first provides the construction of the Helmholtz free energy density for the microsphere model and then develops the transformation of the free energy density to that strain gradient continuum. Applying the proposed strain gradient continuum to the Euler–Bernoulli beam, the size-dependent effects of the free energy, the bending rigidity, and deflection are investigated in detail. This homogenization method bridges the gap between discrete and continuous polymer mediums. Furthermore, the continuum model retains high-order strain gradient information. This correlation facilitates the application of polymers in nanocomposites, enabling the creation of groundbreaking materials through artificial design.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-024-04115-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9805-3957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2024-12, Vol.235 (12), p.7583-7603
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_3133856381
source SpringerLink Journals
subjects Asymptotic methods
Chains (polymeric)
Classical and Continuum Physics
Continuous bridges
Continuum mechanics
Continuum modeling
Control
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Euler-Bernoulli beams
Free energy
Heat and Mass Transfer
Homogenization
Nanocomposites
Original Paper
Polymers
Solid Mechanics
Strain analysis
Theoretical and Applied Mechanics
Vibration
title A microsphere-homogenized strain gradient elasticity model for polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microsphere-homogenized%20strain%20gradient%20elasticity%20model%20for%20polymers&rft.jtitle=Acta%20mechanica&rft.au=Li,%20Ruizhi&rft.date=2024-12-01&rft.volume=235&rft.issue=12&rft.spage=7583&rft.epage=7603&rft.pages=7583-7603&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-024-04115-6&rft_dat=%3Cproquest_cross%3E3133856381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133856381&rft_id=info:pmid/&rfr_iscdi=true