A microsphere-homogenized strain gradient elasticity model for polymers
Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2024-12, Vol.235 (12), p.7583-7603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7603 |
---|---|
container_issue | 12 |
container_start_page | 7583 |
container_title | Acta mechanica |
container_volume | 235 |
creator | Li, Ruizhi Li, Li Jiang, Yiyuan |
description | Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is employed to derive a physics-based strain gradient continuum, where the strain gradient term relies on the concrete geometric structure. This is achieved by connecting the stretch fluctuation field of polymer chains with the strain gradient field through an asymptotic homogenization method. This homogenization method first provides the construction of the Helmholtz free energy density for the microsphere model and then develops the transformation of the free energy density to that strain gradient continuum. Applying the proposed strain gradient continuum to the Euler–Bernoulli beam, the size-dependent effects of the free energy, the bending rigidity, and deflection are investigated in detail. This homogenization method bridges the gap between discrete and continuous polymer mediums. Furthermore, the continuum model retains high-order strain gradient information. This correlation facilitates the application of polymers in nanocomposites, enabling the creation of groundbreaking materials through artificial design. |
doi_str_mv | 10.1007/s00707-024-04115-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133856381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133856381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-1f900fd7ce4a2ebab0918f18c7bf4565a34036ac43a86e69cb654a5f444f6c113</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZJk3b47L4Dxa86Dmk6WS3S9vUpHtYP71dK3jzMsPAe294P8ZuEe4RIH-I04CcQyo5SMSMqzO2QIUlV6XIz9kCAJBnZQ6X7CrG_XSlucQFe14lXWODj8OOAvGd7_yW-uaL6iSOwTR9sg2mbqgfE2pNHBvbjMek8zW1ifMhGXx77CjEa3bhTBvp5ncv2cfT4_v6hW_enl_Xqw23KcDI0ZUArs4tSZNSZSoosXBY2LxyMlOZERKEMlYKUyhSpa1UJk3mpJROWUSxZHdz7hD854HiqPf-EPrppRYoRJEpUZxU6aw6NYuBnB5C05lw1Aj6BEzPwPQETP8A02oyidkUJ3G_pfAX_Y_rG0Y9blw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133856381</pqid></control><display><type>article</type><title>A microsphere-homogenized strain gradient elasticity model for polymers</title><source>SpringerLink Journals</source><creator>Li, Ruizhi ; Li, Li ; Jiang, Yiyuan</creator><creatorcontrib>Li, Ruizhi ; Li, Li ; Jiang, Yiyuan</creatorcontrib><description>Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is employed to derive a physics-based strain gradient continuum, where the strain gradient term relies on the concrete geometric structure. This is achieved by connecting the stretch fluctuation field of polymer chains with the strain gradient field through an asymptotic homogenization method. This homogenization method first provides the construction of the Helmholtz free energy density for the microsphere model and then develops the transformation of the free energy density to that strain gradient continuum. Applying the proposed strain gradient continuum to the Euler–Bernoulli beam, the size-dependent effects of the free energy, the bending rigidity, and deflection are investigated in detail. This homogenization method bridges the gap between discrete and continuous polymer mediums. Furthermore, the continuum model retains high-order strain gradient information. This correlation facilitates the application of polymers in nanocomposites, enabling the creation of groundbreaking materials through artificial design.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-024-04115-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Asymptotic methods ; Chains (polymeric) ; Classical and Continuum Physics ; Continuous bridges ; Continuum mechanics ; Continuum modeling ; Control ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Euler-Bernoulli beams ; Free energy ; Heat and Mass Transfer ; Homogenization ; Nanocomposites ; Original Paper ; Polymers ; Solid Mechanics ; Strain analysis ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2024-12, Vol.235 (12), p.7583-7603</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-1f900fd7ce4a2ebab0918f18c7bf4565a34036ac43a86e69cb654a5f444f6c113</cites><orcidid>0000-0002-9805-3957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-024-04115-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-024-04115-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Ruizhi</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Jiang, Yiyuan</creatorcontrib><title>A microsphere-homogenized strain gradient elasticity model for polymers</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is employed to derive a physics-based strain gradient continuum, where the strain gradient term relies on the concrete geometric structure. This is achieved by connecting the stretch fluctuation field of polymer chains with the strain gradient field through an asymptotic homogenization method. This homogenization method first provides the construction of the Helmholtz free energy density for the microsphere model and then develops the transformation of the free energy density to that strain gradient continuum. Applying the proposed strain gradient continuum to the Euler–Bernoulli beam, the size-dependent effects of the free energy, the bending rigidity, and deflection are investigated in detail. This homogenization method bridges the gap between discrete and continuous polymer mediums. Furthermore, the continuum model retains high-order strain gradient information. This correlation facilitates the application of polymers in nanocomposites, enabling the creation of groundbreaking materials through artificial design.</description><subject>Asymptotic methods</subject><subject>Chains (polymeric)</subject><subject>Classical and Continuum Physics</subject><subject>Continuous bridges</subject><subject>Continuum mechanics</subject><subject>Continuum modeling</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Euler-Bernoulli beams</subject><subject>Free energy</subject><subject>Heat and Mass Transfer</subject><subject>Homogenization</subject><subject>Nanocomposites</subject><subject>Original Paper</subject><subject>Polymers</subject><subject>Solid Mechanics</subject><subject>Strain analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZJk3b47L4Dxa86Dmk6WS3S9vUpHtYP71dK3jzMsPAe294P8ZuEe4RIH-I04CcQyo5SMSMqzO2QIUlV6XIz9kCAJBnZQ6X7CrG_XSlucQFe14lXWODj8OOAvGd7_yW-uaL6iSOwTR9sg2mbqgfE2pNHBvbjMek8zW1ifMhGXx77CjEa3bhTBvp5ncv2cfT4_v6hW_enl_Xqw23KcDI0ZUArs4tSZNSZSoosXBY2LxyMlOZERKEMlYKUyhSpa1UJk3mpJROWUSxZHdz7hD854HiqPf-EPrppRYoRJEpUZxU6aw6NYuBnB5C05lw1Aj6BEzPwPQETP8A02oyidkUJ3G_pfAX_Y_rG0Y9blw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Ruizhi</creator><creator>Li, Li</creator><creator>Jiang, Yiyuan</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9805-3957</orcidid></search><sort><creationdate>20241201</creationdate><title>A microsphere-homogenized strain gradient elasticity model for polymers</title><author>Li, Ruizhi ; Li, Li ; Jiang, Yiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-1f900fd7ce4a2ebab0918f18c7bf4565a34036ac43a86e69cb654a5f444f6c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Chains (polymeric)</topic><topic>Classical and Continuum Physics</topic><topic>Continuous bridges</topic><topic>Continuum mechanics</topic><topic>Continuum modeling</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Euler-Bernoulli beams</topic><topic>Free energy</topic><topic>Heat and Mass Transfer</topic><topic>Homogenization</topic><topic>Nanocomposites</topic><topic>Original Paper</topic><topic>Polymers</topic><topic>Solid Mechanics</topic><topic>Strain analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruizhi</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Jiang, Yiyuan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruizhi</au><au>Li, Li</au><au>Jiang, Yiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microsphere-homogenized strain gradient elasticity model for polymers</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>235</volume><issue>12</issue><spage>7583</spage><epage>7603</epage><pages>7583-7603</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>Polymers consist of many discrete chains, making them inherently discrete rather than continuous. To analyze polymers (and their composites) using continuum mechanics, it is necessary to establish a bridge between their discrete and continuum models. In this paper, the discrete microsphere model is employed to derive a physics-based strain gradient continuum, where the strain gradient term relies on the concrete geometric structure. This is achieved by connecting the stretch fluctuation field of polymer chains with the strain gradient field through an asymptotic homogenization method. This homogenization method first provides the construction of the Helmholtz free energy density for the microsphere model and then develops the transformation of the free energy density to that strain gradient continuum. Applying the proposed strain gradient continuum to the Euler–Bernoulli beam, the size-dependent effects of the free energy, the bending rigidity, and deflection are investigated in detail. This homogenization method bridges the gap between discrete and continuous polymer mediums. Furthermore, the continuum model retains high-order strain gradient information. This correlation facilitates the application of polymers in nanocomposites, enabling the creation of groundbreaking materials through artificial design.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-024-04115-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9805-3957</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2024-12, Vol.235 (12), p.7583-7603 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_3133856381 |
source | SpringerLink Journals |
subjects | Asymptotic methods Chains (polymeric) Classical and Continuum Physics Continuous bridges Continuum mechanics Continuum modeling Control Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Euler-Bernoulli beams Free energy Heat and Mass Transfer Homogenization Nanocomposites Original Paper Polymers Solid Mechanics Strain analysis Theoretical and Applied Mechanics Vibration |
title | A microsphere-homogenized strain gradient elasticity model for polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microsphere-homogenized%20strain%20gradient%20elasticity%20model%20for%20polymers&rft.jtitle=Acta%20mechanica&rft.au=Li,%20Ruizhi&rft.date=2024-12-01&rft.volume=235&rft.issue=12&rft.spage=7583&rft.epage=7603&rft.pages=7583-7603&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-024-04115-6&rft_dat=%3Cproquest_cross%3E3133856381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133856381&rft_id=info:pmid/&rfr_iscdi=true |