Development of an MKID frequency-to-pixel LED mapper for SPT-3G

SPT-3G+ is the next-generation camera for the South Pole Telescope (SPT). SPT is designed to measure the cosmic microwave background (CMB) and the mm/sub-mm sky. The planned focal plane consists of 34,000 microwave kinetic inductance detectors (MKIDs), divided among three observing bands centered at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Martsen, E S, Barry, P S, Benson, B A, Dibert, K R, Fichman, K N, Natoli, T, Rouble, M, C Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Martsen, E S
Barry, P S
Benson, B A
Dibert, K R
Fichman, K N
Natoli, T
Rouble, M
C Yu
description SPT-3G+ is the next-generation camera for the South Pole Telescope (SPT). SPT is designed to measure the cosmic microwave background (CMB) and the mm/sub-mm sky. The planned focal plane consists of 34,000 microwave kinetic inductance detectors (MKIDs), divided among three observing bands centered at 220, 285, and 345 GHz. Each readout line is designed to measure 800 MKIDs over a 500 MHz bandwidth, which places stringent constraints on the accuracy of the frequency placement required to limit resonator collisions that reduce the overall detector yield. To meet this constraint, we are developing a two-step process that first optically maps the resonance to a physical pixel location, and then next trims the interdigitated capacitor (IDC) to adjust the resonator frequency. We present a cryogenic LED apparatus operable at 300 mK for the optical illumination of SPT-3G+ detector arrays. We demonstrate integration of the LED controls with the GHz readout electronics (RF-ICE) to take data on an array of prototype SPT-3G+ detectors. We show that this technique is useful for characterizing defects in the resonator frequency across the detector array and will allow for improvements in the detector yield.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133825125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133825125</sourcerecordid><originalsourceid>FETCH-proquest_journals_31338251253</originalsourceid><addsrcrecordid>eNqNjMsKwjAQAIMgWLT_sOA50O4a7c2DrQ9UEOy9FNmApU1i0or-vR78AE9zmGFGIkKiVGYLxImIQ2iSJMHlCpWiSKxzfnJrXcemB6uhNnA-HnLQnh8Dm9tb9la6-4tbOBU5dLVz7EFbD9dLKWk3E2Ndt4HjH6divi3KzV46b7-D0FeNHbz5qopSogxVior-qz4rQTbC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133825125</pqid></control><display><type>article</type><title>Development of an MKID frequency-to-pixel LED mapper for SPT-3G</title><source>Free E- Journals</source><creator>Martsen, E S ; Barry, P S ; Benson, B A ; Dibert, K R ; Fichman, K N ; Natoli, T ; Rouble, M ; C Yu</creator><creatorcontrib>Martsen, E S ; Barry, P S ; Benson, B A ; Dibert, K R ; Fichman, K N ; Natoli, T ; Rouble, M ; C Yu</creatorcontrib><description>SPT-3G+ is the next-generation camera for the South Pole Telescope (SPT). SPT is designed to measure the cosmic microwave background (CMB) and the mm/sub-mm sky. The planned focal plane consists of 34,000 microwave kinetic inductance detectors (MKIDs), divided among three observing bands centered at 220, 285, and 345 GHz. Each readout line is designed to measure 800 MKIDs over a 500 MHz bandwidth, which places stringent constraints on the accuracy of the frequency placement required to limit resonator collisions that reduce the overall detector yield. To meet this constraint, we are developing a two-step process that first optically maps the resonance to a physical pixel location, and then next trims the interdigitated capacitor (IDC) to adjust the resonator frequency. We present a cryogenic LED apparatus operable at 300 mK for the optical illumination of SPT-3G+ detector arrays. We demonstrate integration of the LED controls with the GHz readout electronics (RF-ICE) to take data on an array of prototype SPT-3G+ detectors. We show that this technique is useful for characterizing defects in the resonator frequency across the detector array and will allow for improvements in the detector yield.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Constraints ; Cosmic microwave background ; Detectors ; Focal plane ; Inductance ; Light emitting diodes ; Pixels ; Resonators ; Sensors ; South Pole</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Martsen, E S</creatorcontrib><creatorcontrib>Barry, P S</creatorcontrib><creatorcontrib>Benson, B A</creatorcontrib><creatorcontrib>Dibert, K R</creatorcontrib><creatorcontrib>Fichman, K N</creatorcontrib><creatorcontrib>Natoli, T</creatorcontrib><creatorcontrib>Rouble, M</creatorcontrib><creatorcontrib>C Yu</creatorcontrib><title>Development of an MKID frequency-to-pixel LED mapper for SPT-3G</title><title>arXiv.org</title><description>SPT-3G+ is the next-generation camera for the South Pole Telescope (SPT). SPT is designed to measure the cosmic microwave background (CMB) and the mm/sub-mm sky. The planned focal plane consists of 34,000 microwave kinetic inductance detectors (MKIDs), divided among three observing bands centered at 220, 285, and 345 GHz. Each readout line is designed to measure 800 MKIDs over a 500 MHz bandwidth, which places stringent constraints on the accuracy of the frequency placement required to limit resonator collisions that reduce the overall detector yield. To meet this constraint, we are developing a two-step process that first optically maps the resonance to a physical pixel location, and then next trims the interdigitated capacitor (IDC) to adjust the resonator frequency. We present a cryogenic LED apparatus operable at 300 mK for the optical illumination of SPT-3G+ detector arrays. We demonstrate integration of the LED controls with the GHz readout electronics (RF-ICE) to take data on an array of prototype SPT-3G+ detectors. We show that this technique is useful for characterizing defects in the resonator frequency across the detector array and will allow for improvements in the detector yield.</description><subject>Arrays</subject><subject>Constraints</subject><subject>Cosmic microwave background</subject><subject>Detectors</subject><subject>Focal plane</subject><subject>Inductance</subject><subject>Light emitting diodes</subject><subject>Pixels</subject><subject>Resonators</subject><subject>Sensors</subject><subject>South Pole</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQAIMgWLT_sOA50O4a7c2DrQ9UEOy9FNmApU1i0or-vR78AE9zmGFGIkKiVGYLxImIQ2iSJMHlCpWiSKxzfnJrXcemB6uhNnA-HnLQnh8Dm9tb9la6-4tbOBU5dLVz7EFbD9dLKWk3E2Ndt4HjH6divi3KzV46b7-D0FeNHbz5qopSogxVior-qz4rQTbC</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Martsen, E S</creator><creator>Barry, P S</creator><creator>Benson, B A</creator><creator>Dibert, K R</creator><creator>Fichman, K N</creator><creator>Natoli, T</creator><creator>Rouble, M</creator><creator>C Yu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241126</creationdate><title>Development of an MKID frequency-to-pixel LED mapper for SPT-3G</title><author>Martsen, E S ; Barry, P S ; Benson, B A ; Dibert, K R ; Fichman, K N ; Natoli, T ; Rouble, M ; C Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31338251253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Constraints</topic><topic>Cosmic microwave background</topic><topic>Detectors</topic><topic>Focal plane</topic><topic>Inductance</topic><topic>Light emitting diodes</topic><topic>Pixels</topic><topic>Resonators</topic><topic>Sensors</topic><topic>South Pole</topic><toplevel>online_resources</toplevel><creatorcontrib>Martsen, E S</creatorcontrib><creatorcontrib>Barry, P S</creatorcontrib><creatorcontrib>Benson, B A</creatorcontrib><creatorcontrib>Dibert, K R</creatorcontrib><creatorcontrib>Fichman, K N</creatorcontrib><creatorcontrib>Natoli, T</creatorcontrib><creatorcontrib>Rouble, M</creatorcontrib><creatorcontrib>C Yu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martsen, E S</au><au>Barry, P S</au><au>Benson, B A</au><au>Dibert, K R</au><au>Fichman, K N</au><au>Natoli, T</au><au>Rouble, M</au><au>C Yu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Development of an MKID frequency-to-pixel LED mapper for SPT-3G</atitle><jtitle>arXiv.org</jtitle><date>2024-11-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>SPT-3G+ is the next-generation camera for the South Pole Telescope (SPT). SPT is designed to measure the cosmic microwave background (CMB) and the mm/sub-mm sky. The planned focal plane consists of 34,000 microwave kinetic inductance detectors (MKIDs), divided among three observing bands centered at 220, 285, and 345 GHz. Each readout line is designed to measure 800 MKIDs over a 500 MHz bandwidth, which places stringent constraints on the accuracy of the frequency placement required to limit resonator collisions that reduce the overall detector yield. To meet this constraint, we are developing a two-step process that first optically maps the resonance to a physical pixel location, and then next trims the interdigitated capacitor (IDC) to adjust the resonator frequency. We present a cryogenic LED apparatus operable at 300 mK for the optical illumination of SPT-3G+ detector arrays. We demonstrate integration of the LED controls with the GHz readout electronics (RF-ICE) to take data on an array of prototype SPT-3G+ detectors. We show that this technique is useful for characterizing defects in the resonator frequency across the detector array and will allow for improvements in the detector yield.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3133825125
source Free E- Journals
subjects Arrays
Constraints
Cosmic microwave background
Detectors
Focal plane
Inductance
Light emitting diodes
Pixels
Resonators
Sensors
South Pole
title Development of an MKID frequency-to-pixel LED mapper for SPT-3G
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Development%20of%20an%20MKID%20frequency-to-pixel%20LED%20mapper%20for%20SPT-3G&rft.jtitle=arXiv.org&rft.au=Martsen,%20E%20S&rft.date=2024-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133825125%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133825125&rft_id=info:pmid/&rfr_iscdi=true