Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network
The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hi...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-11, Vol.2887 (1), p.012004 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 012004 |
container_title | Journal of physics. Conference series |
container_volume | 2887 |
creator | Wang, Yuanzheng Qin, Hui Liu, Jinbo Chen, Youjian Wang, Lipeng Ren, Hongyong Meng, Xianbiao Luo, Wenjiang Gao, Lei |
description | The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hindered by the need of extensive and accurately annotated data, which is challenging to gather in real scenarios. This paper introduces a domain-adaptive YOLO network, evolving from YOLOv7, which trains on FDTD data for source domain detection and real-world data for target domain adaption. The proposed network enhances the network’s ability to generate generalized features across domains and hence improves the detection performance on real GPR data. |
doi_str_mv | 10.1088/1742-6596/2887/1/012004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3133731027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133731027</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1077-2e048cf77a40654cbee887e6ef0527fab253b51cc9102cf497822125f2c6819c3</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMoOKe_wYB3Qm0-2ib1boxtKoMNPy68CmmaaGaX1n7Mv2_CZCKYm3Ny8r4nvA8AlxjdYMR5jFlCoizNs5hwzmIcI0wQSo7A6PByfOg5PwVnXbdBiPrDRsDM3Lt0yro3uFg_RoXsdAn7wTldwcq6MC91JbfWyd7Wzl96rUJ3CycODq4bGt3ubHCV9VZaF8lSNr3dafi6Wq6g0_1X3X6cgxMjq05f_NQxeJnPnqd30XK1uJ9OlpHFiLGIaJRwZRiTCcrSRBVa-0w60walhBlZkJQWKVYqx4gok-SME4JJaojKOM4VHYOr_d6mrT8H3fViUw-t818Kin1g6n3Mq-heZevmV4CRCEBFQCUCNhGACiz2QL3r-h_Xw3r69FcomtLQb-GVdkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133731027</pqid></control><display><type>article</type><title>Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yuanzheng ; Qin, Hui ; Liu, Jinbo ; Chen, Youjian ; Wang, Lipeng ; Ren, Hongyong ; Meng, Xianbiao ; Luo, Wenjiang ; Gao, Lei</creator><creatorcontrib>Wang, Yuanzheng ; Qin, Hui ; Liu, Jinbo ; Chen, Youjian ; Wang, Lipeng ; Ren, Hongyong ; Meng, Xianbiao ; Luo, Wenjiang ; Gao, Lei</creatorcontrib><description>The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hindered by the need of extensive and accurately annotated data, which is challenging to gather in real scenarios. This paper introduces a domain-adaptive YOLO network, evolving from YOLOv7, which trains on FDTD data for source domain detection and real-world data for target domain adaption. The proposed network enhances the network’s ability to generate generalized features across domains and hence improves the detection performance on real GPR data.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2887/1/012004</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Ground penetrating radar ; Radar detection ; Target detection ; Tunnel linings</subject><ispartof>Journal of physics. Conference series, 2024-11, Vol.2887 (1), p.012004</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2887/1/012004/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Wang, Yuanzheng</creatorcontrib><creatorcontrib>Qin, Hui</creatorcontrib><creatorcontrib>Liu, Jinbo</creatorcontrib><creatorcontrib>Chen, Youjian</creatorcontrib><creatorcontrib>Wang, Lipeng</creatorcontrib><creatorcontrib>Ren, Hongyong</creatorcontrib><creatorcontrib>Meng, Xianbiao</creatorcontrib><creatorcontrib>Luo, Wenjiang</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><title>Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hindered by the need of extensive and accurately annotated data, which is challenging to gather in real scenarios. This paper introduces a domain-adaptive YOLO network, evolving from YOLOv7, which trains on FDTD data for source domain detection and real-world data for target domain adaption. The proposed network enhances the network’s ability to generate generalized features across domains and hence improves the detection performance on real GPR data.</description><subject>Ground penetrating radar</subject><subject>Radar detection</subject><subject>Target detection</subject><subject>Tunnel linings</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkF1LwzAUhoMoOKe_wYB3Qm0-2ib1boxtKoMNPy68CmmaaGaX1n7Mv2_CZCKYm3Ny8r4nvA8AlxjdYMR5jFlCoizNs5hwzmIcI0wQSo7A6PByfOg5PwVnXbdBiPrDRsDM3Lt0yro3uFg_RoXsdAn7wTldwcq6MC91JbfWyd7Wzl96rUJ3CycODq4bGt3ubHCV9VZaF8lSNr3dafi6Wq6g0_1X3X6cgxMjq05f_NQxeJnPnqd30XK1uJ9OlpHFiLGIaJRwZRiTCcrSRBVa-0w60walhBlZkJQWKVYqx4gok-SME4JJaojKOM4VHYOr_d6mrT8H3fViUw-t818Kin1g6n3Mq-heZevmV4CRCEBFQCUCNhGACiz2QL3r-h_Xw3r69FcomtLQb-GVdkY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Wang, Yuanzheng</creator><creator>Qin, Hui</creator><creator>Liu, Jinbo</creator><creator>Chen, Youjian</creator><creator>Wang, Lipeng</creator><creator>Ren, Hongyong</creator><creator>Meng, Xianbiao</creator><creator>Luo, Wenjiang</creator><creator>Gao, Lei</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241101</creationdate><title>Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network</title><author>Wang, Yuanzheng ; Qin, Hui ; Liu, Jinbo ; Chen, Youjian ; Wang, Lipeng ; Ren, Hongyong ; Meng, Xianbiao ; Luo, Wenjiang ; Gao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1077-2e048cf77a40654cbee887e6ef0527fab253b51cc9102cf497822125f2c6819c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ground penetrating radar</topic><topic>Radar detection</topic><topic>Target detection</topic><topic>Tunnel linings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuanzheng</creatorcontrib><creatorcontrib>Qin, Hui</creatorcontrib><creatorcontrib>Liu, Jinbo</creatorcontrib><creatorcontrib>Chen, Youjian</creatorcontrib><creatorcontrib>Wang, Lipeng</creatorcontrib><creatorcontrib>Ren, Hongyong</creatorcontrib><creatorcontrib>Meng, Xianbiao</creatorcontrib><creatorcontrib>Luo, Wenjiang</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuanzheng</au><au>Qin, Hui</au><au>Liu, Jinbo</au><au>Chen, Youjian</au><au>Wang, Lipeng</au><au>Ren, Hongyong</au><au>Meng, Xianbiao</au><au>Luo, Wenjiang</au><au>Gao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>2887</volume><issue>1</issue><spage>012004</spage><pages>012004-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hindered by the need of extensive and accurately annotated data, which is challenging to gather in real scenarios. This paper introduces a domain-adaptive YOLO network, evolving from YOLOv7, which trains on FDTD data for source domain detection and real-world data for target domain adaption. The proposed network enhances the network’s ability to generate generalized features across domains and hence improves the detection performance on real GPR data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2887/1/012004</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-11, Vol.2887 (1), p.012004 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_3133731027 |
source | Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ground penetrating radar Radar detection Target detection Tunnel linings |
title | Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20GPR-based%20tunnel%20lining%20delamination%20detection:%20An%20unsupervised%20domain-adaptive%20YOLO%20network&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Wang,%20Yuanzheng&rft.date=2024-11-01&rft.volume=2887&rft.issue=1&rft.spage=012004&rft.pages=012004-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2887/1/012004&rft_dat=%3Cproquest_iop_j%3E3133731027%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133731027&rft_id=info:pmid/&rfr_iscdi=true |