Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network

The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-11, Vol.2887 (1), p.012004
Hauptverfasser: Wang, Yuanzheng, Qin, Hui, Liu, Jinbo, Chen, Youjian, Wang, Lipeng, Ren, Hongyong, Meng, Xianbiao, Luo, Wenjiang, Gao, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 012004
container_title Journal of physics. Conference series
container_volume 2887
creator Wang, Yuanzheng
Qin, Hui
Liu, Jinbo
Chen, Youjian
Wang, Lipeng
Ren, Hongyong
Meng, Xianbiao
Luo, Wenjiang
Gao, Lei
description The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hindered by the need of extensive and accurately annotated data, which is challenging to gather in real scenarios. This paper introduces a domain-adaptive YOLO network, evolving from YOLOv7, which trains on FDTD data for source domain detection and real-world data for target domain adaption. The proposed network enhances the network’s ability to generate generalized features across domains and hence improves the detection performance on real GPR data.
doi_str_mv 10.1088/1742-6596/2887/1/012004
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3133731027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133731027</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1077-2e048cf77a40654cbee887e6ef0527fab253b51cc9102cf497822125f2c6819c3</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMoOKe_wYB3Qm0-2ib1boxtKoMNPy68CmmaaGaX1n7Mv2_CZCKYm3Ny8r4nvA8AlxjdYMR5jFlCoizNs5hwzmIcI0wQSo7A6PByfOg5PwVnXbdBiPrDRsDM3Lt0yro3uFg_RoXsdAn7wTldwcq6MC91JbfWyd7Wzl96rUJ3CycODq4bGt3ubHCV9VZaF8lSNr3dafi6Wq6g0_1X3X6cgxMjq05f_NQxeJnPnqd30XK1uJ9OlpHFiLGIaJRwZRiTCcrSRBVa-0w60walhBlZkJQWKVYqx4gok-SME4JJaojKOM4VHYOr_d6mrT8H3fViUw-t818Kin1g6n3Mq-heZevmV4CRCEBFQCUCNhGACiz2QL3r-h_Xw3r69FcomtLQb-GVdkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133731027</pqid></control><display><type>article</type><title>Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yuanzheng ; Qin, Hui ; Liu, Jinbo ; Chen, Youjian ; Wang, Lipeng ; Ren, Hongyong ; Meng, Xianbiao ; Luo, Wenjiang ; Gao, Lei</creator><creatorcontrib>Wang, Yuanzheng ; Qin, Hui ; Liu, Jinbo ; Chen, Youjian ; Wang, Lipeng ; Ren, Hongyong ; Meng, Xianbiao ; Luo, Wenjiang ; Gao, Lei</creatorcontrib><description>The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hindered by the need of extensive and accurately annotated data, which is challenging to gather in real scenarios. This paper introduces a domain-adaptive YOLO network, evolving from YOLOv7, which trains on FDTD data for source domain detection and real-world data for target domain adaption. The proposed network enhances the network’s ability to generate generalized features across domains and hence improves the detection performance on real GPR data.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2887/1/012004</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Ground penetrating radar ; Radar detection ; Target detection ; Tunnel linings</subject><ispartof>Journal of physics. Conference series, 2024-11, Vol.2887 (1), p.012004</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2887/1/012004/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Wang, Yuanzheng</creatorcontrib><creatorcontrib>Qin, Hui</creatorcontrib><creatorcontrib>Liu, Jinbo</creatorcontrib><creatorcontrib>Chen, Youjian</creatorcontrib><creatorcontrib>Wang, Lipeng</creatorcontrib><creatorcontrib>Ren, Hongyong</creatorcontrib><creatorcontrib>Meng, Xianbiao</creatorcontrib><creatorcontrib>Luo, Wenjiang</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><title>Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hindered by the need of extensive and accurately annotated data, which is challenging to gather in real scenarios. This paper introduces a domain-adaptive YOLO network, evolving from YOLOv7, which trains on FDTD data for source domain detection and real-world data for target domain adaption. The proposed network enhances the network’s ability to generate generalized features across domains and hence improves the detection performance on real GPR data.</description><subject>Ground penetrating radar</subject><subject>Radar detection</subject><subject>Target detection</subject><subject>Tunnel linings</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkF1LwzAUhoMoOKe_wYB3Qm0-2ib1boxtKoMNPy68CmmaaGaX1n7Mv2_CZCKYm3Ny8r4nvA8AlxjdYMR5jFlCoizNs5hwzmIcI0wQSo7A6PByfOg5PwVnXbdBiPrDRsDM3Lt0yro3uFg_RoXsdAn7wTldwcq6MC91JbfWyd7Wzl96rUJ3CycODq4bGt3ubHCV9VZaF8lSNr3dafi6Wq6g0_1X3X6cgxMjq05f_NQxeJnPnqd30XK1uJ9OlpHFiLGIaJRwZRiTCcrSRBVa-0w60walhBlZkJQWKVYqx4gok-SME4JJaojKOM4VHYOr_d6mrT8H3fViUw-t818Kin1g6n3Mq-heZevmV4CRCEBFQCUCNhGACiz2QL3r-h_Xw3r69FcomtLQb-GVdkY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Wang, Yuanzheng</creator><creator>Qin, Hui</creator><creator>Liu, Jinbo</creator><creator>Chen, Youjian</creator><creator>Wang, Lipeng</creator><creator>Ren, Hongyong</creator><creator>Meng, Xianbiao</creator><creator>Luo, Wenjiang</creator><creator>Gao, Lei</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241101</creationdate><title>Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network</title><author>Wang, Yuanzheng ; Qin, Hui ; Liu, Jinbo ; Chen, Youjian ; Wang, Lipeng ; Ren, Hongyong ; Meng, Xianbiao ; Luo, Wenjiang ; Gao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1077-2e048cf77a40654cbee887e6ef0527fab253b51cc9102cf497822125f2c6819c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ground penetrating radar</topic><topic>Radar detection</topic><topic>Target detection</topic><topic>Tunnel linings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuanzheng</creatorcontrib><creatorcontrib>Qin, Hui</creatorcontrib><creatorcontrib>Liu, Jinbo</creatorcontrib><creatorcontrib>Chen, Youjian</creatorcontrib><creatorcontrib>Wang, Lipeng</creatorcontrib><creatorcontrib>Ren, Hongyong</creatorcontrib><creatorcontrib>Meng, Xianbiao</creatorcontrib><creatorcontrib>Luo, Wenjiang</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuanzheng</au><au>Qin, Hui</au><au>Liu, Jinbo</au><au>Chen, Youjian</au><au>Wang, Lipeng</au><au>Ren, Hongyong</au><au>Meng, Xianbiao</au><au>Luo, Wenjiang</au><au>Gao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>2887</volume><issue>1</issue><spage>012004</spage><pages>012004-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The ground penetrating radar (GPR) is one of the most recommended methods for tunnel lining inspection, yet the interpreting the GPR data requires significant time and expertise. Recent attempts to automate this procedure using deep learning techniques have made significant progress, yet is still hindered by the need of extensive and accurately annotated data, which is challenging to gather in real scenarios. This paper introduces a domain-adaptive YOLO network, evolving from YOLOv7, which trains on FDTD data for source domain detection and real-world data for target domain adaption. The proposed network enhances the network’s ability to generate generalized features across domains and hence improves the detection performance on real GPR data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2887/1/012004</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-11, Vol.2887 (1), p.012004
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3133731027
source Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ground penetrating radar
Radar detection
Target detection
Tunnel linings
title Enhancing GPR-based tunnel lining delamination detection: An unsupervised domain-adaptive YOLO network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20GPR-based%20tunnel%20lining%20delamination%20detection:%20An%20unsupervised%20domain-adaptive%20YOLO%20network&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Wang,%20Yuanzheng&rft.date=2024-11-01&rft.volume=2887&rft.issue=1&rft.spage=012004&rft.pages=012004-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2887/1/012004&rft_dat=%3Cproquest_iop_j%3E3133731027%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133731027&rft_id=info:pmid/&rfr_iscdi=true