Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures
The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2024-11, Vol.149 (22), p.12709-12718 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12718 |
---|---|
container_issue | 22 |
container_start_page | 12709 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 149 |
creator | Jalaei Salmani, Hossein |
description | The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using only the Hansen solubility parameters (HSPs) of organic solvents and their concentrations in the mixture to be as straightforward as possible. This is the first time that HSPs have been used to calculate the FP of components. The potential of the proposed ANN in calculating the FP of organic liquid mixtures was thoroughly examined using numerous complex ternary mixtures, including methanol-2,2,4-trimethylpentane-toluene, methanol-decane-acetone, 1-butanol-acetic acid-ethylbenzene, 2-pentanol-acetic acid-ethylbenzene, 1-butanol-acetic acid-propyl butyrate, 2-pentanol-acetic acid-propyl butyrate, isopropyl alcohol-ethanol-octane, and 2-butanol-ethanol-octane. The unusual minimum and maximum flash point behaviors, resulting from significant differences in intermolecular forces among the components in the mixtures, were properly represented by the ANN-based model.
Furthermore, based on the obtained results, the coefficient of determination (
R
2
) for the training, validation, and testing samples was 0.999, 0.998, and 0.972, respectively, and 0.997 for all data. Additionally, the root-mean-square deviation (RMSD) for the training, validation, and testing samples was 0.34 °C, 0.81 °C, and 1.8 °C, respectively, and 0.83 °C for all data. |
doi_str_mv | 10.1007/s10973-024-13620-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133718480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133718480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-101a28adaee677a9631e63bc9a28f09e4038d10e1b83d4784a63f8e325cd88ea3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxqOKSi0tL8DJEufAOM4mzhFVQJFa9QJna9aZLC5eOx3bgn0tnrDuLhI3LvNP329mpK9p3kp4LwHGD0nCNKoWur6Vauig1WfNpdxo3XZTN7yqtar1IDdw0bxO6REApgnkZfPnPnqyxSMLFzIx2uxiSMLW4Obav7SiJBd24hZDoiBS9GXrvMsHsSLjniqWKi1Q7IvPzuOBWKzEltbMlUbObnHWoReBCh9T_hX5p1gii8Vj-iHWWM-LlWl2xw9EXETkHQZnhXdPxc1i737nwpSum_MFfaI3f_NV8_3zp283t-3dw5evNx_vWtsB5FaCxE7jjETDOOI0KEmD2tqpTheYqAelZwkkt1rN_ah7HNSiSXUbO2tNqK6ad6e9K8enQimbx1g41JNGSaVGqXsNVdWdVJZjSkyLWdntkQ9Ggnnxxpy8MdUbc_TG6AqpE5SqOOyI_63-D_UMZkCX_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133718480</pqid></control><display><type>article</type><title>Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures</title><source>Springer Nature Link eJournals</source><creator>Jalaei Salmani, Hossein</creator><creatorcontrib>Jalaei Salmani, Hossein</creatorcontrib><description>The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using only the Hansen solubility parameters (HSPs) of organic solvents and their concentrations in the mixture to be as straightforward as possible. This is the first time that HSPs have been used to calculate the FP of components. The potential of the proposed ANN in calculating the FP of organic liquid mixtures was thoroughly examined using numerous complex ternary mixtures, including methanol-2,2,4-trimethylpentane-toluene, methanol-decane-acetone, 1-butanol-acetic acid-ethylbenzene, 2-pentanol-acetic acid-ethylbenzene, 1-butanol-acetic acid-propyl butyrate, 2-pentanol-acetic acid-propyl butyrate, isopropyl alcohol-ethanol-octane, and 2-butanol-ethanol-octane. The unusual minimum and maximum flash point behaviors, resulting from significant differences in intermolecular forces among the components in the mixtures, were properly represented by the ANN-based model.
Furthermore, based on the obtained results, the coefficient of determination (
R
2
) for the training, validation, and testing samples was 0.999, 0.998, and 0.972, respectively, and 0.997 for all data. Additionally, the root-mean-square deviation (RMSD) for the training, validation, and testing samples was 0.34 °C, 0.81 °C, and 1.8 °C, respectively, and 0.83 °C for all data.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-024-13620-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acetic acid ; Acids ; Analytical Chemistry ; Artificial neural networks ; Butanol ; Chemistry ; Chemistry and Materials Science ; Ethanol ; Ethylbenzene ; Flash point ; Inorganic Chemistry ; Intermolecular forces ; Isooctane ; Isopropanol ; Measurement Science and Instrumentation ; Methanol ; Mixtures ; Molecular interactions ; Multilayer perceptrons ; Neural networks ; Organic liquids ; Physical Chemistry ; Polymer Sciences ; Solubility parameters ; Thermophysical properties ; Toluene</subject><ispartof>Journal of thermal analysis and calorimetry, 2024-11, Vol.149 (22), p.12709-12718</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-101a28adaee677a9631e63bc9a28f09e4038d10e1b83d4784a63f8e325cd88ea3</cites><orcidid>0000-0001-6018-1278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-024-13620-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-024-13620-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jalaei Salmani, Hossein</creatorcontrib><title>Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using only the Hansen solubility parameters (HSPs) of organic solvents and their concentrations in the mixture to be as straightforward as possible. This is the first time that HSPs have been used to calculate the FP of components. The potential of the proposed ANN in calculating the FP of organic liquid mixtures was thoroughly examined using numerous complex ternary mixtures, including methanol-2,2,4-trimethylpentane-toluene, methanol-decane-acetone, 1-butanol-acetic acid-ethylbenzene, 2-pentanol-acetic acid-ethylbenzene, 1-butanol-acetic acid-propyl butyrate, 2-pentanol-acetic acid-propyl butyrate, isopropyl alcohol-ethanol-octane, and 2-butanol-ethanol-octane. The unusual minimum and maximum flash point behaviors, resulting from significant differences in intermolecular forces among the components in the mixtures, were properly represented by the ANN-based model.
Furthermore, based on the obtained results, the coefficient of determination (
R
2
) for the training, validation, and testing samples was 0.999, 0.998, and 0.972, respectively, and 0.997 for all data. Additionally, the root-mean-square deviation (RMSD) for the training, validation, and testing samples was 0.34 °C, 0.81 °C, and 1.8 °C, respectively, and 0.83 °C for all data.</description><subject>Acetic acid</subject><subject>Acids</subject><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Butanol</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Ethanol</subject><subject>Ethylbenzene</subject><subject>Flash point</subject><subject>Inorganic Chemistry</subject><subject>Intermolecular forces</subject><subject>Isooctane</subject><subject>Isopropanol</subject><subject>Measurement Science and Instrumentation</subject><subject>Methanol</subject><subject>Mixtures</subject><subject>Molecular interactions</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Organic liquids</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Solubility parameters</subject><subject>Thermophysical properties</subject><subject>Toluene</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxqOKSi0tL8DJEufAOM4mzhFVQJFa9QJna9aZLC5eOx3bgn0tnrDuLhI3LvNP329mpK9p3kp4LwHGD0nCNKoWur6Vauig1WfNpdxo3XZTN7yqtar1IDdw0bxO6REApgnkZfPnPnqyxSMLFzIx2uxiSMLW4Obav7SiJBd24hZDoiBS9GXrvMsHsSLjniqWKi1Q7IvPzuOBWKzEltbMlUbObnHWoReBCh9T_hX5p1gii8Vj-iHWWM-LlWl2xw9EXETkHQZnhXdPxc1i737nwpSum_MFfaI3f_NV8_3zp283t-3dw5evNx_vWtsB5FaCxE7jjETDOOI0KEmD2tqpTheYqAelZwkkt1rN_ah7HNSiSXUbO2tNqK6ad6e9K8enQimbx1g41JNGSaVGqXsNVdWdVJZjSkyLWdntkQ9Ggnnxxpy8MdUbc_TG6AqpE5SqOOyI_63-D_UMZkCX_A</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jalaei Salmani, Hossein</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6018-1278</orcidid></search><sort><creationdate>20241101</creationdate><title>Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures</title><author>Jalaei Salmani, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-101a28adaee677a9631e63bc9a28f09e4038d10e1b83d4784a63f8e325cd88ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>Acids</topic><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Butanol</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Ethanol</topic><topic>Ethylbenzene</topic><topic>Flash point</topic><topic>Inorganic Chemistry</topic><topic>Intermolecular forces</topic><topic>Isooctane</topic><topic>Isopropanol</topic><topic>Measurement Science and Instrumentation</topic><topic>Methanol</topic><topic>Mixtures</topic><topic>Molecular interactions</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Organic liquids</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Solubility parameters</topic><topic>Thermophysical properties</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalaei Salmani, Hossein</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalaei Salmani, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>149</volume><issue>22</issue><spage>12709</spage><epage>12718</epage><pages>12709-12718</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using only the Hansen solubility parameters (HSPs) of organic solvents and their concentrations in the mixture to be as straightforward as possible. This is the first time that HSPs have been used to calculate the FP of components. The potential of the proposed ANN in calculating the FP of organic liquid mixtures was thoroughly examined using numerous complex ternary mixtures, including methanol-2,2,4-trimethylpentane-toluene, methanol-decane-acetone, 1-butanol-acetic acid-ethylbenzene, 2-pentanol-acetic acid-ethylbenzene, 1-butanol-acetic acid-propyl butyrate, 2-pentanol-acetic acid-propyl butyrate, isopropyl alcohol-ethanol-octane, and 2-butanol-ethanol-octane. The unusual minimum and maximum flash point behaviors, resulting from significant differences in intermolecular forces among the components in the mixtures, were properly represented by the ANN-based model.
Furthermore, based on the obtained results, the coefficient of determination (
R
2
) for the training, validation, and testing samples was 0.999, 0.998, and 0.972, respectively, and 0.997 for all data. Additionally, the root-mean-square deviation (RMSD) for the training, validation, and testing samples was 0.34 °C, 0.81 °C, and 1.8 °C, respectively, and 0.83 °C for all data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-024-13620-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6018-1278</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2024-11, Vol.149 (22), p.12709-12718 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_3133718480 |
source | Springer Nature Link eJournals |
subjects | Acetic acid Acids Analytical Chemistry Artificial neural networks Butanol Chemistry Chemistry and Materials Science Ethanol Ethylbenzene Flash point Inorganic Chemistry Intermolecular forces Isooctane Isopropanol Measurement Science and Instrumentation Methanol Mixtures Molecular interactions Multilayer perceptrons Neural networks Organic liquids Physical Chemistry Polymer Sciences Solubility parameters Thermophysical properties Toluene |
title | Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20interactions%20consideration%20using%20Hansen%20solubility%20parameters%20in%20a%20multilayer%20perceptron%20artificial%20neural%20network%20for%20flash%20point%20prediction%20of%20organic%20liquid%20mixtures&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Jalaei%20Salmani,%20Hossein&rft.date=2024-11-01&rft.volume=149&rft.issue=22&rft.spage=12709&rft.epage=12718&rft.pages=12709-12718&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-024-13620-8&rft_dat=%3Cproquest_cross%3E3133718480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133718480&rft_id=info:pmid/&rfr_iscdi=true |