Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures

The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2024-11, Vol.149 (22), p.12709-12718
1. Verfasser: Jalaei Salmani, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12718
container_issue 22
container_start_page 12709
container_title Journal of thermal analysis and calorimetry
container_volume 149
creator Jalaei Salmani, Hossein
description The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using only the Hansen solubility parameters (HSPs) of organic solvents and their concentrations in the mixture to be as straightforward as possible. This is the first time that HSPs have been used to calculate the FP of components. The potential of the proposed ANN in calculating the FP of organic liquid mixtures was thoroughly examined using numerous complex ternary mixtures, including methanol-2,2,4-trimethylpentane-toluene, methanol-decane-acetone, 1-butanol-acetic acid-ethylbenzene, 2-pentanol-acetic acid-ethylbenzene, 1-butanol-acetic acid-propyl butyrate, 2-pentanol-acetic acid-propyl butyrate, isopropyl alcohol-ethanol-octane, and 2-butanol-ethanol-octane. The unusual minimum and maximum flash point behaviors, resulting from significant differences in intermolecular forces among the components in the mixtures, were properly represented by the ANN-based model. Furthermore, based on the obtained results, the coefficient of determination ( R 2 ) for the training, validation, and testing samples was 0.999, 0.998, and 0.972, respectively, and 0.997 for all data. Additionally, the root-mean-square deviation (RMSD) for the training, validation, and testing samples was 0.34 °C, 0.81 °C, and 1.8 °C, respectively, and 0.83 °C for all data.
doi_str_mv 10.1007/s10973-024-13620-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133718480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133718480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-101a28adaee677a9631e63bc9a28f09e4038d10e1b83d4784a63f8e325cd88ea3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxqOKSi0tL8DJEufAOM4mzhFVQJFa9QJna9aZLC5eOx3bgn0tnrDuLhI3LvNP329mpK9p3kp4LwHGD0nCNKoWur6Vauig1WfNpdxo3XZTN7yqtar1IDdw0bxO6REApgnkZfPnPnqyxSMLFzIx2uxiSMLW4Obav7SiJBd24hZDoiBS9GXrvMsHsSLjniqWKi1Q7IvPzuOBWKzEltbMlUbObnHWoReBCh9T_hX5p1gii8Vj-iHWWM-LlWl2xw9EXETkHQZnhXdPxc1i737nwpSum_MFfaI3f_NV8_3zp283t-3dw5evNx_vWtsB5FaCxE7jjETDOOI0KEmD2tqpTheYqAelZwkkt1rN_ah7HNSiSXUbO2tNqK6ad6e9K8enQimbx1g41JNGSaVGqXsNVdWdVJZjSkyLWdntkQ9Ggnnxxpy8MdUbc_TG6AqpE5SqOOyI_63-D_UMZkCX_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133718480</pqid></control><display><type>article</type><title>Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures</title><source>Springer Nature Link eJournals</source><creator>Jalaei Salmani, Hossein</creator><creatorcontrib>Jalaei Salmani, Hossein</creatorcontrib><description>The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using only the Hansen solubility parameters (HSPs) of organic solvents and their concentrations in the mixture to be as straightforward as possible. This is the first time that HSPs have been used to calculate the FP of components. The potential of the proposed ANN in calculating the FP of organic liquid mixtures was thoroughly examined using numerous complex ternary mixtures, including methanol-2,2,4-trimethylpentane-toluene, methanol-decane-acetone, 1-butanol-acetic acid-ethylbenzene, 2-pentanol-acetic acid-ethylbenzene, 1-butanol-acetic acid-propyl butyrate, 2-pentanol-acetic acid-propyl butyrate, isopropyl alcohol-ethanol-octane, and 2-butanol-ethanol-octane. The unusual minimum and maximum flash point behaviors, resulting from significant differences in intermolecular forces among the components in the mixtures, were properly represented by the ANN-based model. Furthermore, based on the obtained results, the coefficient of determination ( R 2 ) for the training, validation, and testing samples was 0.999, 0.998, and 0.972, respectively, and 0.997 for all data. Additionally, the root-mean-square deviation (RMSD) for the training, validation, and testing samples was 0.34 °C, 0.81 °C, and 1.8 °C, respectively, and 0.83 °C for all data.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-024-13620-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acetic acid ; Acids ; Analytical Chemistry ; Artificial neural networks ; Butanol ; Chemistry ; Chemistry and Materials Science ; Ethanol ; Ethylbenzene ; Flash point ; Inorganic Chemistry ; Intermolecular forces ; Isooctane ; Isopropanol ; Measurement Science and Instrumentation ; Methanol ; Mixtures ; Molecular interactions ; Multilayer perceptrons ; Neural networks ; Organic liquids ; Physical Chemistry ; Polymer Sciences ; Solubility parameters ; Thermophysical properties ; Toluene</subject><ispartof>Journal of thermal analysis and calorimetry, 2024-11, Vol.149 (22), p.12709-12718</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-101a28adaee677a9631e63bc9a28f09e4038d10e1b83d4784a63f8e325cd88ea3</cites><orcidid>0000-0001-6018-1278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-024-13620-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-024-13620-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jalaei Salmani, Hossein</creatorcontrib><title>Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using only the Hansen solubility parameters (HSPs) of organic solvents and their concentrations in the mixture to be as straightforward as possible. This is the first time that HSPs have been used to calculate the FP of components. The potential of the proposed ANN in calculating the FP of organic liquid mixtures was thoroughly examined using numerous complex ternary mixtures, including methanol-2,2,4-trimethylpentane-toluene, methanol-decane-acetone, 1-butanol-acetic acid-ethylbenzene, 2-pentanol-acetic acid-ethylbenzene, 1-butanol-acetic acid-propyl butyrate, 2-pentanol-acetic acid-propyl butyrate, isopropyl alcohol-ethanol-octane, and 2-butanol-ethanol-octane. The unusual minimum and maximum flash point behaviors, resulting from significant differences in intermolecular forces among the components in the mixtures, were properly represented by the ANN-based model. Furthermore, based on the obtained results, the coefficient of determination ( R 2 ) for the training, validation, and testing samples was 0.999, 0.998, and 0.972, respectively, and 0.997 for all data. Additionally, the root-mean-square deviation (RMSD) for the training, validation, and testing samples was 0.34 °C, 0.81 °C, and 1.8 °C, respectively, and 0.83 °C for all data.</description><subject>Acetic acid</subject><subject>Acids</subject><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Butanol</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Ethanol</subject><subject>Ethylbenzene</subject><subject>Flash point</subject><subject>Inorganic Chemistry</subject><subject>Intermolecular forces</subject><subject>Isooctane</subject><subject>Isopropanol</subject><subject>Measurement Science and Instrumentation</subject><subject>Methanol</subject><subject>Mixtures</subject><subject>Molecular interactions</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Organic liquids</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Solubility parameters</subject><subject>Thermophysical properties</subject><subject>Toluene</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxqOKSi0tL8DJEufAOM4mzhFVQJFa9QJna9aZLC5eOx3bgn0tnrDuLhI3LvNP329mpK9p3kp4LwHGD0nCNKoWur6Vauig1WfNpdxo3XZTN7yqtar1IDdw0bxO6REApgnkZfPnPnqyxSMLFzIx2uxiSMLW4Obav7SiJBd24hZDoiBS9GXrvMsHsSLjniqWKi1Q7IvPzuOBWKzEltbMlUbObnHWoReBCh9T_hX5p1gii8Vj-iHWWM-LlWl2xw9EXETkHQZnhXdPxc1i737nwpSum_MFfaI3f_NV8_3zp283t-3dw5evNx_vWtsB5FaCxE7jjETDOOI0KEmD2tqpTheYqAelZwkkt1rN_ah7HNSiSXUbO2tNqK6ad6e9K8enQimbx1g41JNGSaVGqXsNVdWdVJZjSkyLWdntkQ9Ggnnxxpy8MdUbc_TG6AqpE5SqOOyI_63-D_UMZkCX_A</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jalaei Salmani, Hossein</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6018-1278</orcidid></search><sort><creationdate>20241101</creationdate><title>Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures</title><author>Jalaei Salmani, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-101a28adaee677a9631e63bc9a28f09e4038d10e1b83d4784a63f8e325cd88ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>Acids</topic><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Butanol</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Ethanol</topic><topic>Ethylbenzene</topic><topic>Flash point</topic><topic>Inorganic Chemistry</topic><topic>Intermolecular forces</topic><topic>Isooctane</topic><topic>Isopropanol</topic><topic>Measurement Science and Instrumentation</topic><topic>Methanol</topic><topic>Mixtures</topic><topic>Molecular interactions</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Organic liquids</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Solubility parameters</topic><topic>Thermophysical properties</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalaei Salmani, Hossein</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalaei Salmani, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>149</volume><issue>22</issue><spage>12709</spage><epage>12718</epage><pages>12709-12718</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The flash point temperature, or simply the flash point (FP), is the most significant thermophysical property of organic components and must be calculated precisely to handle them safely. In this work, a single hidden layer multilayer perceptron artificial neural network (MLPANN) was developed using only the Hansen solubility parameters (HSPs) of organic solvents and their concentrations in the mixture to be as straightforward as possible. This is the first time that HSPs have been used to calculate the FP of components. The potential of the proposed ANN in calculating the FP of organic liquid mixtures was thoroughly examined using numerous complex ternary mixtures, including methanol-2,2,4-trimethylpentane-toluene, methanol-decane-acetone, 1-butanol-acetic acid-ethylbenzene, 2-pentanol-acetic acid-ethylbenzene, 1-butanol-acetic acid-propyl butyrate, 2-pentanol-acetic acid-propyl butyrate, isopropyl alcohol-ethanol-octane, and 2-butanol-ethanol-octane. The unusual minimum and maximum flash point behaviors, resulting from significant differences in intermolecular forces among the components in the mixtures, were properly represented by the ANN-based model. Furthermore, based on the obtained results, the coefficient of determination ( R 2 ) for the training, validation, and testing samples was 0.999, 0.998, and 0.972, respectively, and 0.997 for all data. Additionally, the root-mean-square deviation (RMSD) for the training, validation, and testing samples was 0.34 °C, 0.81 °C, and 1.8 °C, respectively, and 0.83 °C for all data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-024-13620-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6018-1278</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2024-11, Vol.149 (22), p.12709-12718
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_3133718480
source Springer Nature Link eJournals
subjects Acetic acid
Acids
Analytical Chemistry
Artificial neural networks
Butanol
Chemistry
Chemistry and Materials Science
Ethanol
Ethylbenzene
Flash point
Inorganic Chemistry
Intermolecular forces
Isooctane
Isopropanol
Measurement Science and Instrumentation
Methanol
Mixtures
Molecular interactions
Multilayer perceptrons
Neural networks
Organic liquids
Physical Chemistry
Polymer Sciences
Solubility parameters
Thermophysical properties
Toluene
title Molecular interactions consideration using Hansen solubility parameters in a multilayer perceptron artificial neural network for flash point prediction of organic liquid mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20interactions%20consideration%20using%20Hansen%20solubility%20parameters%20in%20a%20multilayer%20perceptron%20artificial%20neural%20network%20for%20flash%20point%20prediction%20of%20organic%20liquid%20mixtures&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Jalaei%20Salmani,%20Hossein&rft.date=2024-11-01&rft.volume=149&rft.issue=22&rft.spage=12709&rft.epage=12718&rft.pages=12709-12718&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-024-13620-8&rft_dat=%3Cproquest_cross%3E3133718480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133718480&rft_id=info:pmid/&rfr_iscdi=true