Effect of Geometry on Flexural Wave Propagation in a Notched Bar
The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and m...
Gespeichert in:
Veröffentlicht in: | Acoustical physics 2024-08, Vol.70 (4), p.593-601 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 601 |
---|---|
container_issue | 4 |
container_start_page | 593 |
container_title | Acoustical physics |
container_volume | 70 |
creator | Agafonov, A. A. Izosimova, M. Yu Zhostkov, R. A. Kokshayskiy, A. I. Korobov, A. I. Odina, N. I. |
description | The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations. |
doi_str_mv | 10.1134/S1063771024602000 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133718393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133718393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-dd8e35fd226e85fd1522559bb49609476a70e55c91d39ef8b84c592b9f76f6523</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrf4AbwHPq3nJJpvc1NJWoaig4nHJ7r7UlnZTk12x_96UCh7E0zyYj8cMIefALgFEfvUMTImiAMZzxThj7IAMQCqeKa3kYboTne34Y3IS4zIJjBB8QK7HzmHdUe_oFP0au7ClvqWTFX71wa7om_1E-hT8xs5tt0jMoqWWPviufseG3tpwSo6cXUU8-8EheZ2MX0Z32exxej-6mWU1GN1lTaNRSNdwrlAnBMm5lKaqcqOYyQtlC4ZS1gYaYdDpSue1NLwyrlBOSS6G5GKfuwn-o8fYlUvfhza9LAUIUYAWqdGQwF5VBx9jQFduwmJtw7YEVu6GKv8MlTx874lJ284x_Cb_b_oG7TJnZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133718393</pqid></control><display><type>article</type><title>Effect of Geometry on Flexural Wave Propagation in a Notched Bar</title><source>Springer Nature - Complete Springer Journals</source><creator>Agafonov, A. A. ; Izosimova, M. Yu ; Zhostkov, R. A. ; Kokshayskiy, A. I. ; Korobov, A. I. ; Odina, N. I.</creator><creatorcontrib>Agafonov, A. A. ; Izosimova, M. Yu ; Zhostkov, R. A. ; Kokshayskiy, A. I. ; Korobov, A. I. ; Odina, N. I.</creatorcontrib><description>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771024602000</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustic propagation ; Acoustics ; Amplitudes ; Classical Problems of Linear Acoustics and Wave Theory ; Elastic waves ; Frequency ranges ; Notches ; Numerical models ; Physics ; Physics and Astronomy ; Wave propagation</subject><ispartof>Acoustical physics, 2024-08, Vol.70 (4), p.593-601</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7710, Acoustical Physics, 2024, Vol. 70, No. 4, pp. 593–601. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-dd8e35fd226e85fd1522559bb49609476a70e55c91d39ef8b84c592b9f76f6523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063771024602000$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063771024602000$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Agafonov, A. A.</creatorcontrib><creatorcontrib>Izosimova, M. Yu</creatorcontrib><creatorcontrib>Zhostkov, R. A.</creatorcontrib><creatorcontrib>Kokshayskiy, A. I.</creatorcontrib><creatorcontrib>Korobov, A. I.</creatorcontrib><creatorcontrib>Odina, N. I.</creatorcontrib><title>Effect of Geometry on Flexural Wave Propagation in a Notched Bar</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</description><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Amplitudes</subject><subject>Classical Problems of Linear Acoustics and Wave Theory</subject><subject>Elastic waves</subject><subject>Frequency ranges</subject><subject>Notches</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Wave propagation</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrf4AbwHPq3nJJpvc1NJWoaig4nHJ7r7UlnZTk12x_96UCh7E0zyYj8cMIefALgFEfvUMTImiAMZzxThj7IAMQCqeKa3kYboTne34Y3IS4zIJjBB8QK7HzmHdUe_oFP0au7ClvqWTFX71wa7om_1E-hT8xs5tt0jMoqWWPviufseG3tpwSo6cXUU8-8EheZ2MX0Z32exxej-6mWU1GN1lTaNRSNdwrlAnBMm5lKaqcqOYyQtlC4ZS1gYaYdDpSue1NLwyrlBOSS6G5GKfuwn-o8fYlUvfhza9LAUIUYAWqdGQwF5VBx9jQFduwmJtw7YEVu6GKv8MlTx874lJ284x_Cb_b_oG7TJnZQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Agafonov, A. A.</creator><creator>Izosimova, M. Yu</creator><creator>Zhostkov, R. A.</creator><creator>Kokshayskiy, A. I.</creator><creator>Korobov, A. I.</creator><creator>Odina, N. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Effect of Geometry on Flexural Wave Propagation in a Notched Bar</title><author>Agafonov, A. A. ; Izosimova, M. Yu ; Zhostkov, R. A. ; Kokshayskiy, A. I. ; Korobov, A. I. ; Odina, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-dd8e35fd226e85fd1522559bb49609476a70e55c91d39ef8b84c592b9f76f6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Amplitudes</topic><topic>Classical Problems of Linear Acoustics and Wave Theory</topic><topic>Elastic waves</topic><topic>Frequency ranges</topic><topic>Notches</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agafonov, A. A.</creatorcontrib><creatorcontrib>Izosimova, M. Yu</creatorcontrib><creatorcontrib>Zhostkov, R. A.</creatorcontrib><creatorcontrib>Kokshayskiy, A. I.</creatorcontrib><creatorcontrib>Korobov, A. I.</creatorcontrib><creatorcontrib>Odina, N. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agafonov, A. A.</au><au>Izosimova, M. Yu</au><au>Zhostkov, R. A.</au><au>Kokshayskiy, A. I.</au><au>Korobov, A. I.</au><au>Odina, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Geometry on Flexural Wave Propagation in a Notched Bar</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><spage>593</spage><epage>601</epage><pages>593-601</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771024602000</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7710 |
ispartof | Acoustical physics, 2024-08, Vol.70 (4), p.593-601 |
issn | 1063-7710 1562-6865 |
language | eng |
recordid | cdi_proquest_journals_3133718393 |
source | Springer Nature - Complete Springer Journals |
subjects | Acoustic propagation Acoustics Amplitudes Classical Problems of Linear Acoustics and Wave Theory Elastic waves Frequency ranges Notches Numerical models Physics Physics and Astronomy Wave propagation |
title | Effect of Geometry on Flexural Wave Propagation in a Notched Bar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Geometry%20on%20Flexural%20Wave%20Propagation%20in%20a%20Notched%20Bar&rft.jtitle=Acoustical%20physics&rft.au=Agafonov,%20A.%20A.&rft.date=2024-08-01&rft.volume=70&rft.issue=4&rft.spage=593&rft.epage=601&rft.pages=593-601&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771024602000&rft_dat=%3Cproquest_cross%3E3133718393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133718393&rft_id=info:pmid/&rfr_iscdi=true |