Effect of Geometry on Flexural Wave Propagation in a Notched Bar

The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acoustical physics 2024-08, Vol.70 (4), p.593-601
Hauptverfasser: Agafonov, A. A., Izosimova, M. Yu, Zhostkov, R. A., Kokshayskiy, A. I., Korobov, A. I., Odina, N. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 4
container_start_page 593
container_title Acoustical physics
container_volume 70
creator Agafonov, A. A.
Izosimova, M. Yu
Zhostkov, R. A.
Kokshayskiy, A. I.
Korobov, A. I.
Odina, N. I.
description The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.
doi_str_mv 10.1134/S1063771024602000
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133718393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133718393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-dd8e35fd226e85fd1522559bb49609476a70e55c91d39ef8b84c592b9f76f6523</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrf4AbwHPq3nJJpvc1NJWoaig4nHJ7r7UlnZTk12x_96UCh7E0zyYj8cMIefALgFEfvUMTImiAMZzxThj7IAMQCqeKa3kYboTne34Y3IS4zIJjBB8QK7HzmHdUe_oFP0au7ClvqWTFX71wa7om_1E-hT8xs5tt0jMoqWWPviufseG3tpwSo6cXUU8-8EheZ2MX0Z32exxej-6mWU1GN1lTaNRSNdwrlAnBMm5lKaqcqOYyQtlC4ZS1gYaYdDpSue1NLwyrlBOSS6G5GKfuwn-o8fYlUvfhza9LAUIUYAWqdGQwF5VBx9jQFduwmJtw7YEVu6GKv8MlTx874lJ284x_Cb_b_oG7TJnZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133718393</pqid></control><display><type>article</type><title>Effect of Geometry on Flexural Wave Propagation in a Notched Bar</title><source>Springer Nature - Complete Springer Journals</source><creator>Agafonov, A. A. ; Izosimova, M. Yu ; Zhostkov, R. A. ; Kokshayskiy, A. I. ; Korobov, A. I. ; Odina, N. I.</creator><creatorcontrib>Agafonov, A. A. ; Izosimova, M. Yu ; Zhostkov, R. A. ; Kokshayskiy, A. I. ; Korobov, A. I. ; Odina, N. I.</creatorcontrib><description>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771024602000</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustic propagation ; Acoustics ; Amplitudes ; Classical Problems of Linear Acoustics and Wave Theory ; Elastic waves ; Frequency ranges ; Notches ; Numerical models ; Physics ; Physics and Astronomy ; Wave propagation</subject><ispartof>Acoustical physics, 2024-08, Vol.70 (4), p.593-601</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7710, Acoustical Physics, 2024, Vol. 70, No. 4, pp. 593–601. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-dd8e35fd226e85fd1522559bb49609476a70e55c91d39ef8b84c592b9f76f6523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063771024602000$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063771024602000$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Agafonov, A. A.</creatorcontrib><creatorcontrib>Izosimova, M. Yu</creatorcontrib><creatorcontrib>Zhostkov, R. A.</creatorcontrib><creatorcontrib>Kokshayskiy, A. I.</creatorcontrib><creatorcontrib>Korobov, A. I.</creatorcontrib><creatorcontrib>Odina, N. I.</creatorcontrib><title>Effect of Geometry on Flexural Wave Propagation in a Notched Bar</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</description><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Amplitudes</subject><subject>Classical Problems of Linear Acoustics and Wave Theory</subject><subject>Elastic waves</subject><subject>Frequency ranges</subject><subject>Notches</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Wave propagation</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrf4AbwHPq3nJJpvc1NJWoaig4nHJ7r7UlnZTk12x_96UCh7E0zyYj8cMIefALgFEfvUMTImiAMZzxThj7IAMQCqeKa3kYboTne34Y3IS4zIJjBB8QK7HzmHdUe_oFP0au7ClvqWTFX71wa7om_1E-hT8xs5tt0jMoqWWPviufseG3tpwSo6cXUU8-8EheZ2MX0Z32exxej-6mWU1GN1lTaNRSNdwrlAnBMm5lKaqcqOYyQtlC4ZS1gYaYdDpSue1NLwyrlBOSS6G5GKfuwn-o8fYlUvfhza9LAUIUYAWqdGQwF5VBx9jQFduwmJtw7YEVu6GKv8MlTx874lJ284x_Cb_b_oG7TJnZQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Agafonov, A. A.</creator><creator>Izosimova, M. Yu</creator><creator>Zhostkov, R. A.</creator><creator>Kokshayskiy, A. I.</creator><creator>Korobov, A. I.</creator><creator>Odina, N. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Effect of Geometry on Flexural Wave Propagation in a Notched Bar</title><author>Agafonov, A. A. ; Izosimova, M. Yu ; Zhostkov, R. A. ; Kokshayskiy, A. I. ; Korobov, A. I. ; Odina, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-dd8e35fd226e85fd1522559bb49609476a70e55c91d39ef8b84c592b9f76f6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Amplitudes</topic><topic>Classical Problems of Linear Acoustics and Wave Theory</topic><topic>Elastic waves</topic><topic>Frequency ranges</topic><topic>Notches</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agafonov, A. A.</creatorcontrib><creatorcontrib>Izosimova, M. Yu</creatorcontrib><creatorcontrib>Zhostkov, R. A.</creatorcontrib><creatorcontrib>Kokshayskiy, A. I.</creatorcontrib><creatorcontrib>Korobov, A. I.</creatorcontrib><creatorcontrib>Odina, N. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agafonov, A. A.</au><au>Izosimova, M. Yu</au><au>Zhostkov, R. A.</au><au>Kokshayskiy, A. I.</au><au>Korobov, A. I.</au><au>Odina, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Geometry on Flexural Wave Propagation in a Notched Bar</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><spage>593</spage><epage>601</epage><pages>593-601</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771024602000</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7710
ispartof Acoustical physics, 2024-08, Vol.70 (4), p.593-601
issn 1063-7710
1562-6865
language eng
recordid cdi_proquest_journals_3133718393
source Springer Nature - Complete Springer Journals
subjects Acoustic propagation
Acoustics
Amplitudes
Classical Problems of Linear Acoustics and Wave Theory
Elastic waves
Frequency ranges
Notches
Numerical models
Physics
Physics and Astronomy
Wave propagation
title Effect of Geometry on Flexural Wave Propagation in a Notched Bar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Geometry%20on%20Flexural%20Wave%20Propagation%20in%20a%20Notched%20Bar&rft.jtitle=Acoustical%20physics&rft.au=Agafonov,%20A.%20A.&rft.date=2024-08-01&rft.volume=70&rft.issue=4&rft.spage=593&rft.epage=601&rft.pages=593-601&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771024602000&rft_dat=%3Cproquest_cross%3E3133718393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133718393&rft_id=info:pmid/&rfr_iscdi=true