Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers
Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can addr...
Gespeichert in:
Veröffentlicht in: | International Journal of Combinatorial Optimization Problems and Informatics 2024-11, Vol.15 (4), p.7-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 4 |
container_start_page | 7 |
container_title | International Journal of Combinatorial Optimization Problems and Informatics |
container_volume | 15 |
creator | González Sánchez, Alberto Ontiveros Capurata, Ronald Ernesto |
description | Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can address this issue but require extensive resources, whereas supervised learning algorithms offer a less resource-demanding alternative. This study evaluates four machine learning techniques for groundwater availability prediction: support vector machine regression, M5' model trees, random forests (RFR), and artificial neural networks. The models were trained using climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 and 2020. Random forests performed the best, showing a high correlation coefficient and low RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer management. |
doi_str_mv | 10.61467/2007.1558.2024.v15i4.498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133667833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133667833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-8e497304a2d4dc5007db362595f6e90c7466fcb9ea1b49a2fcb99a57a27c2e0c3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOb-Q8Tr1jQfbXNZhk5hQ8F5HdL01GVsaZe00_17m80Lz8154X05H08U3ac4yVKW5Y8E4zxJOS8SgglLjik3LGGiuIomwYqDdf1P30Yz77d4rAJjLvAk6krvwfs92B61DfoYOnBH46FGK6U3xgJagnLW2C-0Br2x5jCAR03r0LuD2ug-OAvXDrb-Vj04VB6V2anK7Ex_QsaiFfwYrSwqD4NpwPm76KZROw-zvz6NPp-f1vOXePm2eJ2Xy1iTlPVxAUzkFDNFalZrPj5QVzQjXPAmA4F1zrKs0ZUAlVZMKBK0UDxXJNcEsKbT6OEyt3NtuLmX23ZwdlwpaUppluUFpWNKXFLatd47aGTnzF65k0yxPDOWAZ4M8GRgLM-M5ciY_gLX2XHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133667833</pqid></control><display><type>article</type><title>Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>González Sánchez, Alberto ; Ontiveros Capurata, Ronald Ernesto</creator><creatorcontrib>González Sánchez, Alberto ; Ontiveros Capurata, Ronald Ernesto</creatorcontrib><description>Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can address this issue but require extensive resources, whereas supervised learning algorithms offer a less resource-demanding alternative. This study evaluates four machine learning techniques for groundwater availability prediction: support vector machine regression, M5' model trees, random forests (RFR), and artificial neural networks. The models were trained using climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 and 2020. Random forests performed the best, showing a high correlation coefficient and low RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer management.</description><identifier>ISSN: 2007-1558</identifier><identifier>EISSN: 2007-1558</identifier><identifier>DOI: 10.61467/2007.1558.2024.v15i4.498</identifier><language>eng</language><publisher>Jiutepec: International Journal of Combinatorial Optimization Problems & Informatics</publisher><subject>Algorithms ; Aquifers ; Artificial neural networks ; Availability ; Climate change ; Climate models ; Correlation coefficients ; Datasets ; Groundwater ; Informatics ; Land use ; Machine learning ; Neural networks ; Optimization ; Precipitation ; Predictions ; Regression models ; Supervised learning ; Support vector machines ; Temperature ; Variables</subject><ispartof>International Journal of Combinatorial Optimization Problems and Informatics, 2024-11, Vol.15 (4), p.7-18</ispartof><rights>Copyright International Journal of Combinatorial Optimization Problems & Informatics 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5094-0469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>González Sánchez, Alberto</creatorcontrib><creatorcontrib>Ontiveros Capurata, Ronald Ernesto</creatorcontrib><title>Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers</title><title>International Journal of Combinatorial Optimization Problems and Informatics</title><description>Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can address this issue but require extensive resources, whereas supervised learning algorithms offer a less resource-demanding alternative. This study evaluates four machine learning techniques for groundwater availability prediction: support vector machine regression, M5' model trees, random forests (RFR), and artificial neural networks. The models were trained using climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 and 2020. Random forests performed the best, showing a high correlation coefficient and low RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer management.</description><subject>Algorithms</subject><subject>Aquifers</subject><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Groundwater</subject><subject>Informatics</subject><subject>Land use</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Precipitation</subject><subject>Predictions</subject><subject>Regression models</subject><subject>Supervised learning</subject><subject>Support vector machines</subject><subject>Temperature</subject><subject>Variables</subject><issn>2007-1558</issn><issn>2007-1558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkF1LwzAUhosoOOb-Q8Tr1jQfbXNZhk5hQ8F5HdL01GVsaZe00_17m80Lz8154X05H08U3ac4yVKW5Y8E4zxJOS8SgglLjik3LGGiuIomwYqDdf1P30Yz77d4rAJjLvAk6krvwfs92B61DfoYOnBH46FGK6U3xgJagnLW2C-0Br2x5jCAR03r0LuD2ug-OAvXDrb-Vj04VB6V2anK7Ex_QsaiFfwYrSwqD4NpwPm76KZROw-zvz6NPp-f1vOXePm2eJ2Xy1iTlPVxAUzkFDNFalZrPj5QVzQjXPAmA4F1zrKs0ZUAlVZMKBK0UDxXJNcEsKbT6OEyt3NtuLmX23ZwdlwpaUppluUFpWNKXFLatd47aGTnzF65k0yxPDOWAZ4M8GRgLM-M5ciY_gLX2XHM</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>González Sánchez, Alberto</creator><creator>Ontiveros Capurata, Ronald Ernesto</creator><general>International Journal of Combinatorial Optimization Problems & Informatics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5094-0469</orcidid></search><sort><creationdate>20241104</creationdate><title>Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers</title><author>González Sánchez, Alberto ; Ontiveros Capurata, Ronald Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-8e497304a2d4dc5007db362595f6e90c7466fcb9ea1b49a2fcb99a57a27c2e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aquifers</topic><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Groundwater</topic><topic>Informatics</topic><topic>Land use</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Precipitation</topic><topic>Predictions</topic><topic>Regression models</topic><topic>Supervised learning</topic><topic>Support vector machines</topic><topic>Temperature</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González Sánchez, Alberto</creatorcontrib><creatorcontrib>Ontiveros Capurata, Ronald Ernesto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International Journal of Combinatorial Optimization Problems and Informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González Sánchez, Alberto</au><au>Ontiveros Capurata, Ronald Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers</atitle><jtitle>International Journal of Combinatorial Optimization Problems and Informatics</jtitle><date>2024-11-04</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>7</spage><epage>18</epage><pages>7-18</pages><issn>2007-1558</issn><eissn>2007-1558</eissn><abstract>Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can address this issue but require extensive resources, whereas supervised learning algorithms offer a less resource-demanding alternative. This study evaluates four machine learning techniques for groundwater availability prediction: support vector machine regression, M5' model trees, random forests (RFR), and artificial neural networks. The models were trained using climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 and 2020. Random forests performed the best, showing a high correlation coefficient and low RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer management.</abstract><cop>Jiutepec</cop><pub>International Journal of Combinatorial Optimization Problems & Informatics</pub><doi>10.61467/2007.1558.2024.v15i4.498</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5094-0469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2007-1558 |
ispartof | International Journal of Combinatorial Optimization Problems and Informatics, 2024-11, Vol.15 (4), p.7-18 |
issn | 2007-1558 2007-1558 |
language | eng |
recordid | cdi_proquest_journals_3133667833 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Aquifers Artificial neural networks Availability Climate change Climate models Correlation coefficients Datasets Groundwater Informatics Land use Machine learning Neural networks Optimization Precipitation Predictions Regression models Supervised learning Support vector machines Temperature Variables |
title | Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Supervised%20Machine%20Learning%20Techniques%20for%20Predicting%20Groundwater%20Availability%20in%20Mexican%20Aquifers&rft.jtitle=International%20Journal%20of%20Combinatorial%20Optimization%20Problems%20and%20Informatics&rft.au=Gonz%C3%A1lez%20S%C3%A1nchez,%20Alberto&rft.date=2024-11-04&rft.volume=15&rft.issue=4&rft.spage=7&rft.epage=18&rft.pages=7-18&rft.issn=2007-1558&rft.eissn=2007-1558&rft_id=info:doi/10.61467/2007.1558.2024.v15i4.498&rft_dat=%3Cproquest_cross%3E3133667833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133667833&rft_id=info:pmid/&rfr_iscdi=true |