Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers

Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can addr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Combinatorial Optimization Problems and Informatics 2024-11, Vol.15 (4), p.7-18
Hauptverfasser: González Sánchez, Alberto, Ontiveros Capurata, Ronald Ernesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 4
container_start_page 7
container_title International Journal of Combinatorial Optimization Problems and Informatics
container_volume 15
creator González Sánchez, Alberto
Ontiveros Capurata, Ronald Ernesto
description Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can address this issue but require extensive resources, whereas supervised learning algorithms offer a less resource-demanding alternative. This study evaluates four machine learning techniques for groundwater availability prediction: support vector machine regression, M5' model trees, random forests (RFR), and artificial neural networks. The models were trained using climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 and 2020. Random forests performed the best, showing a high correlation coefficient and low RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer management.
doi_str_mv 10.61467/2007.1558.2024.v15i4.498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133667833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133667833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-8e497304a2d4dc5007db362595f6e90c7466fcb9ea1b49a2fcb99a57a27c2e0c3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOb-Q8Tr1jQfbXNZhk5hQ8F5HdL01GVsaZe00_17m80Lz8154X05H08U3ac4yVKW5Y8E4zxJOS8SgglLjik3LGGiuIomwYqDdf1P30Yz77d4rAJjLvAk6krvwfs92B61DfoYOnBH46FGK6U3xgJagnLW2C-0Br2x5jCAR03r0LuD2ug-OAvXDrb-Vj04VB6V2anK7Ex_QsaiFfwYrSwqD4NpwPm76KZROw-zvz6NPp-f1vOXePm2eJ2Xy1iTlPVxAUzkFDNFalZrPj5QVzQjXPAmA4F1zrKs0ZUAlVZMKBK0UDxXJNcEsKbT6OEyt3NtuLmX23ZwdlwpaUppluUFpWNKXFLatd47aGTnzF65k0yxPDOWAZ4M8GRgLM-M5ciY_gLX2XHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133667833</pqid></control><display><type>article</type><title>Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>González Sánchez, Alberto ; Ontiveros Capurata, Ronald Ernesto</creator><creatorcontrib>González Sánchez, Alberto ; Ontiveros Capurata, Ronald Ernesto</creatorcontrib><description>Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can address this issue but require extensive resources, whereas supervised learning algorithms offer a less resource-demanding alternative. This study evaluates four machine learning techniques for groundwater availability prediction: support vector machine regression, M5' model trees, random forests (RFR), and artificial neural networks. The models were trained using climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 and 2020. Random forests performed the best, showing a high correlation coefficient and low RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer management.</description><identifier>ISSN: 2007-1558</identifier><identifier>EISSN: 2007-1558</identifier><identifier>DOI: 10.61467/2007.1558.2024.v15i4.498</identifier><language>eng</language><publisher>Jiutepec: International Journal of Combinatorial Optimization Problems &amp; Informatics</publisher><subject>Algorithms ; Aquifers ; Artificial neural networks ; Availability ; Climate change ; Climate models ; Correlation coefficients ; Datasets ; Groundwater ; Informatics ; Land use ; Machine learning ; Neural networks ; Optimization ; Precipitation ; Predictions ; Regression models ; Supervised learning ; Support vector machines ; Temperature ; Variables</subject><ispartof>International Journal of Combinatorial Optimization Problems and Informatics, 2024-11, Vol.15 (4), p.7-18</ispartof><rights>Copyright International Journal of Combinatorial Optimization Problems &amp; Informatics 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5094-0469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>González Sánchez, Alberto</creatorcontrib><creatorcontrib>Ontiveros Capurata, Ronald Ernesto</creatorcontrib><title>Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers</title><title>International Journal of Combinatorial Optimization Problems and Informatics</title><description>Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can address this issue but require extensive resources, whereas supervised learning algorithms offer a less resource-demanding alternative. This study evaluates four machine learning techniques for groundwater availability prediction: support vector machine regression, M5' model trees, random forests (RFR), and artificial neural networks. The models were trained using climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 and 2020. Random forests performed the best, showing a high correlation coefficient and low RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer management.</description><subject>Algorithms</subject><subject>Aquifers</subject><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Groundwater</subject><subject>Informatics</subject><subject>Land use</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Precipitation</subject><subject>Predictions</subject><subject>Regression models</subject><subject>Supervised learning</subject><subject>Support vector machines</subject><subject>Temperature</subject><subject>Variables</subject><issn>2007-1558</issn><issn>2007-1558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkF1LwzAUhosoOOb-Q8Tr1jQfbXNZhk5hQ8F5HdL01GVsaZe00_17m80Lz8154X05H08U3ac4yVKW5Y8E4zxJOS8SgglLjik3LGGiuIomwYqDdf1P30Yz77d4rAJjLvAk6krvwfs92B61DfoYOnBH46FGK6U3xgJagnLW2C-0Br2x5jCAR03r0LuD2ug-OAvXDrb-Vj04VB6V2anK7Ex_QsaiFfwYrSwqD4NpwPm76KZROw-zvz6NPp-f1vOXePm2eJ2Xy1iTlPVxAUzkFDNFalZrPj5QVzQjXPAmA4F1zrKs0ZUAlVZMKBK0UDxXJNcEsKbT6OEyt3NtuLmX23ZwdlwpaUppluUFpWNKXFLatd47aGTnzF65k0yxPDOWAZ4M8GRgLM-M5ciY_gLX2XHM</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>González Sánchez, Alberto</creator><creator>Ontiveros Capurata, Ronald Ernesto</creator><general>International Journal of Combinatorial Optimization Problems &amp; Informatics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5094-0469</orcidid></search><sort><creationdate>20241104</creationdate><title>Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers</title><author>González Sánchez, Alberto ; Ontiveros Capurata, Ronald Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-8e497304a2d4dc5007db362595f6e90c7466fcb9ea1b49a2fcb99a57a27c2e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aquifers</topic><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Groundwater</topic><topic>Informatics</topic><topic>Land use</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Precipitation</topic><topic>Predictions</topic><topic>Regression models</topic><topic>Supervised learning</topic><topic>Support vector machines</topic><topic>Temperature</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González Sánchez, Alberto</creatorcontrib><creatorcontrib>Ontiveros Capurata, Ronald Ernesto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International Journal of Combinatorial Optimization Problems and Informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González Sánchez, Alberto</au><au>Ontiveros Capurata, Ronald Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers</atitle><jtitle>International Journal of Combinatorial Optimization Problems and Informatics</jtitle><date>2024-11-04</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>7</spage><epage>18</epage><pages>7-18</pages><issn>2007-1558</issn><eissn>2007-1558</eissn><abstract>Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 39.1% of water for consumptive use. The National Water Commission manages this resource, but predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. Physical models can address this issue but require extensive resources, whereas supervised learning algorithms offer a less resource-demanding alternative. This study evaluates four machine learning techniques for groundwater availability prediction: support vector machine regression, M5' model trees, random forests (RFR), and artificial neural networks. The models were trained using climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 and 2020. Random forests performed the best, showing a high correlation coefficient and low RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer management.</abstract><cop>Jiutepec</cop><pub>International Journal of Combinatorial Optimization Problems &amp; Informatics</pub><doi>10.61467/2007.1558.2024.v15i4.498</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5094-0469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2007-1558
ispartof International Journal of Combinatorial Optimization Problems and Informatics, 2024-11, Vol.15 (4), p.7-18
issn 2007-1558
2007-1558
language eng
recordid cdi_proquest_journals_3133667833
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Aquifers
Artificial neural networks
Availability
Climate change
Climate models
Correlation coefficients
Datasets
Groundwater
Informatics
Land use
Machine learning
Neural networks
Optimization
Precipitation
Predictions
Regression models
Supervised learning
Support vector machines
Temperature
Variables
title Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Supervised%20Machine%20Learning%20Techniques%20for%20Predicting%20Groundwater%20Availability%20in%20Mexican%20Aquifers&rft.jtitle=International%20Journal%20of%20Combinatorial%20Optimization%20Problems%20and%20Informatics&rft.au=Gonz%C3%A1lez%20S%C3%A1nchez,%20Alberto&rft.date=2024-11-04&rft.volume=15&rft.issue=4&rft.spage=7&rft.epage=18&rft.pages=7-18&rft.issn=2007-1558&rft.eissn=2007-1558&rft_id=info:doi/10.61467/2007.1558.2024.v15i4.498&rft_dat=%3Cproquest_cross%3E3133667833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133667833&rft_id=info:pmid/&rfr_iscdi=true