Predicting the soliton dynamics and system parameters in optical fiber couplers
This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This meth...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2025, Vol.113 (2), p.1523-1537 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1537 |
---|---|
container_issue | 2 |
container_start_page | 1523 |
container_title | Nonlinear dynamics |
container_volume | 113 |
creator | Yang, Aocheng Xu, Suyong Liu, Huatao Li, Nan Sun, Yunzhou |
description | This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This method, which incorporates loss function weight decay and hard constraints, addresses both the inverse and forward problem predictions of the model. Comparisons with analytical solutions demonstrate that this approach effectively predicts soliton transmission and accurately identifies unknown parameters in the inverse problem. Additionally, the study examines how different noise conditions, the number of neuron layers, and dataset selection impact prediction errors. |
doi_str_mv | 10.1007/s11071-024-10235-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133630087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133630087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-428bb2089e789b7fc0991bc3c40f749dff62156597c3e32b2ccaa4e0155d195e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkNpkspXiDQl0odBcymUxNmZtJuujbGx3Bnauz-G-HD6FrArcEQN5FQkCSAigvCFAmCn6CFkRIVtBSbU_RAlSWQMH2HF3EuAcARqFaoM1rcI23yQ87nD4cjmPn0zjg5jiY3tuIzdDgeIzJ9XgywfQuuRCxH_A4JW9Nh1tfu4DteJi6rFyis9Z00V393iV6f3x4Wz0X683Ty-p-XVgKkApOq7rODygnK1XL1oJSpLbMcmglV03blpSIUihpmWO0ptYawx0QIRqihGNLdDP3TmH8PLiY9H48hCFPakYYKxlAJbOLzi4bxhiDa_UUfG_CURPQ3-D0DE5ncPoHnOY5xOZQzOZh58Jf9T-pL0P2cP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133630087</pqid></control><display><type>article</type><title>Predicting the soliton dynamics and system parameters in optical fiber couplers</title><source>SpringerLink Journals</source><creator>Yang, Aocheng ; Xu, Suyong ; Liu, Huatao ; Li, Nan ; Sun, Yunzhou</creator><creatorcontrib>Yang, Aocheng ; Xu, Suyong ; Liu, Huatao ; Li, Nan ; Sun, Yunzhou</creatorcontrib><description>This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This method, which incorporates loss function weight decay and hard constraints, addresses both the inverse and forward problem predictions of the model. Comparisons with analytical solutions demonstrate that this approach effectively predicts soliton transmission and accurately identifies unknown parameters in the inverse problem. Additionally, the study examines how different noise conditions, the number of neuron layers, and dataset selection impact prediction errors.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10235-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Applications of Nonlinear Dynamics and Chaos Theory ; Classical Mechanics ; Control ; Couplers ; Datasets ; Deep learning ; Dynamical Systems ; Exact solutions ; Forward problem ; Fourier transforms ; Impact prediction ; Inverse problems ; Methods ; Neural networks ; Noise prediction ; Nonlinear dynamics ; Optical fibers ; Parameter identification ; Partial differential equations ; Physics ; Physics and Astronomy ; Schrodinger equation ; Solitary waves ; Statistical Physics and Dynamical Systems ; Velocity ; Vibration</subject><ispartof>Nonlinear dynamics, 2025, Vol.113 (2), p.1523-1537</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-428bb2089e789b7fc0991bc3c40f749dff62156597c3e32b2ccaa4e0155d195e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10235-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10235-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Aocheng</creatorcontrib><creatorcontrib>Xu, Suyong</creatorcontrib><creatorcontrib>Liu, Huatao</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Sun, Yunzhou</creatorcontrib><title>Predicting the soliton dynamics and system parameters in optical fiber couplers</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This method, which incorporates loss function weight decay and hard constraints, addresses both the inverse and forward problem predictions of the model. Comparisons with analytical solutions demonstrate that this approach effectively predicts soliton transmission and accurately identifies unknown parameters in the inverse problem. Additionally, the study examines how different noise conditions, the number of neuron layers, and dataset selection impact prediction errors.</description><subject>Algorithms</subject><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Couplers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dynamical Systems</subject><subject>Exact solutions</subject><subject>Forward problem</subject><subject>Fourier transforms</subject><subject>Impact prediction</subject><subject>Inverse problems</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise prediction</subject><subject>Nonlinear dynamics</subject><subject>Optical fibers</subject><subject>Parameter identification</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Velocity</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkNpkspXiDQl0odBcymUxNmZtJuujbGx3Bnauz-G-HD6FrArcEQN5FQkCSAigvCFAmCn6CFkRIVtBSbU_RAlSWQMH2HF3EuAcARqFaoM1rcI23yQ87nD4cjmPn0zjg5jiY3tuIzdDgeIzJ9XgywfQuuRCxH_A4JW9Nh1tfu4DteJi6rFyis9Z00V393iV6f3x4Wz0X683Ty-p-XVgKkApOq7rODygnK1XL1oJSpLbMcmglV03blpSIUihpmWO0ptYawx0QIRqihGNLdDP3TmH8PLiY9H48hCFPakYYKxlAJbOLzi4bxhiDa_UUfG_CURPQ3-D0DE5ncPoHnOY5xOZQzOZh58Jf9T-pL0P2cP8</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yang, Aocheng</creator><creator>Xu, Suyong</creator><creator>Liu, Huatao</creator><creator>Li, Nan</creator><creator>Sun, Yunzhou</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Predicting the soliton dynamics and system parameters in optical fiber couplers</title><author>Yang, Aocheng ; Xu, Suyong ; Liu, Huatao ; Li, Nan ; Sun, Yunzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-428bb2089e789b7fc0991bc3c40f749dff62156597c3e32b2ccaa4e0155d195e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Couplers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dynamical Systems</topic><topic>Exact solutions</topic><topic>Forward problem</topic><topic>Fourier transforms</topic><topic>Impact prediction</topic><topic>Inverse problems</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise prediction</topic><topic>Nonlinear dynamics</topic><topic>Optical fibers</topic><topic>Parameter identification</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Aocheng</creatorcontrib><creatorcontrib>Xu, Suyong</creatorcontrib><creatorcontrib>Liu, Huatao</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Sun, Yunzhou</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Aocheng</au><au>Xu, Suyong</au><au>Liu, Huatao</au><au>Li, Nan</au><au>Sun, Yunzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the soliton dynamics and system parameters in optical fiber couplers</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2025</date><risdate>2025</risdate><volume>113</volume><issue>2</issue><spage>1523</spage><epage>1537</epage><pages>1523-1537</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This method, which incorporates loss function weight decay and hard constraints, addresses both the inverse and forward problem predictions of the model. Comparisons with analytical solutions demonstrate that this approach effectively predicts soliton transmission and accurately identifies unknown parameters in the inverse problem. Additionally, the study examines how different noise conditions, the number of neuron layers, and dataset selection impact prediction errors.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10235-4</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2025, Vol.113 (2), p.1523-1537 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3133630087 |
source | SpringerLink Journals |
subjects | Algorithms Applications of Nonlinear Dynamics and Chaos Theory Classical Mechanics Control Couplers Datasets Deep learning Dynamical Systems Exact solutions Forward problem Fourier transforms Impact prediction Inverse problems Methods Neural networks Noise prediction Nonlinear dynamics Optical fibers Parameter identification Partial differential equations Physics Physics and Astronomy Schrodinger equation Solitary waves Statistical Physics and Dynamical Systems Velocity Vibration |
title | Predicting the soliton dynamics and system parameters in optical fiber couplers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20soliton%20dynamics%20and%20system%20parameters%20in%20optical%20fiber%20couplers&rft.jtitle=Nonlinear%20dynamics&rft.au=Yang,%20Aocheng&rft.date=2025&rft.volume=113&rft.issue=2&rft.spage=1523&rft.epage=1537&rft.pages=1523-1537&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10235-4&rft_dat=%3Cproquest_cross%3E3133630087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133630087&rft_id=info:pmid/&rfr_iscdi=true |