Predicting the soliton dynamics and system parameters in optical fiber couplers

This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2025, Vol.113 (2), p.1523-1537
Hauptverfasser: Yang, Aocheng, Xu, Suyong, Liu, Huatao, Li, Nan, Sun, Yunzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1537
container_issue 2
container_start_page 1523
container_title Nonlinear dynamics
container_volume 113
creator Yang, Aocheng
Xu, Suyong
Liu, Huatao
Li, Nan
Sun, Yunzhou
description This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This method, which incorporates loss function weight decay and hard constraints, addresses both the inverse and forward problem predictions of the model. Comparisons with analytical solutions demonstrate that this approach effectively predicts soliton transmission and accurately identifies unknown parameters in the inverse problem. Additionally, the study examines how different noise conditions, the number of neuron layers, and dataset selection impact prediction errors.
doi_str_mv 10.1007/s11071-024-10235-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133630087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133630087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-428bb2089e789b7fc0991bc3c40f749dff62156597c3e32b2ccaa4e0155d195e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkNpkspXiDQl0odBcymUxNmZtJuujbGx3Bnauz-G-HD6FrArcEQN5FQkCSAigvCFAmCn6CFkRIVtBSbU_RAlSWQMH2HF3EuAcARqFaoM1rcI23yQ87nD4cjmPn0zjg5jiY3tuIzdDgeIzJ9XgywfQuuRCxH_A4JW9Nh1tfu4DteJi6rFyis9Z00V393iV6f3x4Wz0X683Ty-p-XVgKkApOq7rODygnK1XL1oJSpLbMcmglV03blpSIUihpmWO0ptYawx0QIRqihGNLdDP3TmH8PLiY9H48hCFPakYYKxlAJbOLzi4bxhiDa_UUfG_CURPQ3-D0DE5ncPoHnOY5xOZQzOZh58Jf9T-pL0P2cP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133630087</pqid></control><display><type>article</type><title>Predicting the soliton dynamics and system parameters in optical fiber couplers</title><source>SpringerLink Journals</source><creator>Yang, Aocheng ; Xu, Suyong ; Liu, Huatao ; Li, Nan ; Sun, Yunzhou</creator><creatorcontrib>Yang, Aocheng ; Xu, Suyong ; Liu, Huatao ; Li, Nan ; Sun, Yunzhou</creatorcontrib><description>This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This method, which incorporates loss function weight decay and hard constraints, addresses both the inverse and forward problem predictions of the model. Comparisons with analytical solutions demonstrate that this approach effectively predicts soliton transmission and accurately identifies unknown parameters in the inverse problem. Additionally, the study examines how different noise conditions, the number of neuron layers, and dataset selection impact prediction errors.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10235-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Applications of Nonlinear Dynamics and Chaos Theory ; Classical Mechanics ; Control ; Couplers ; Datasets ; Deep learning ; Dynamical Systems ; Exact solutions ; Forward problem ; Fourier transforms ; Impact prediction ; Inverse problems ; Methods ; Neural networks ; Noise prediction ; Nonlinear dynamics ; Optical fibers ; Parameter identification ; Partial differential equations ; Physics ; Physics and Astronomy ; Schrodinger equation ; Solitary waves ; Statistical Physics and Dynamical Systems ; Velocity ; Vibration</subject><ispartof>Nonlinear dynamics, 2025, Vol.113 (2), p.1523-1537</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-428bb2089e789b7fc0991bc3c40f749dff62156597c3e32b2ccaa4e0155d195e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10235-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10235-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Aocheng</creatorcontrib><creatorcontrib>Xu, Suyong</creatorcontrib><creatorcontrib>Liu, Huatao</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Sun, Yunzhou</creatorcontrib><title>Predicting the soliton dynamics and system parameters in optical fiber couplers</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This method, which incorporates loss function weight decay and hard constraints, addresses both the inverse and forward problem predictions of the model. Comparisons with analytical solutions demonstrate that this approach effectively predicts soliton transmission and accurately identifies unknown parameters in the inverse problem. Additionally, the study examines how different noise conditions, the number of neuron layers, and dataset selection impact prediction errors.</description><subject>Algorithms</subject><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Couplers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dynamical Systems</subject><subject>Exact solutions</subject><subject>Forward problem</subject><subject>Fourier transforms</subject><subject>Impact prediction</subject><subject>Inverse problems</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise prediction</subject><subject>Nonlinear dynamics</subject><subject>Optical fibers</subject><subject>Parameter identification</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Velocity</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkNpkspXiDQl0odBcymUxNmZtJuujbGx3Bnauz-G-HD6FrArcEQN5FQkCSAigvCFAmCn6CFkRIVtBSbU_RAlSWQMH2HF3EuAcARqFaoM1rcI23yQ87nD4cjmPn0zjg5jiY3tuIzdDgeIzJ9XgywfQuuRCxH_A4JW9Nh1tfu4DteJi6rFyis9Z00V393iV6f3x4Wz0X683Ty-p-XVgKkApOq7rODygnK1XL1oJSpLbMcmglV03blpSIUihpmWO0ptYawx0QIRqihGNLdDP3TmH8PLiY9H48hCFPakYYKxlAJbOLzi4bxhiDa_UUfG_CURPQ3-D0DE5ncPoHnOY5xOZQzOZh58Jf9T-pL0P2cP8</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yang, Aocheng</creator><creator>Xu, Suyong</creator><creator>Liu, Huatao</creator><creator>Li, Nan</creator><creator>Sun, Yunzhou</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Predicting the soliton dynamics and system parameters in optical fiber couplers</title><author>Yang, Aocheng ; Xu, Suyong ; Liu, Huatao ; Li, Nan ; Sun, Yunzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-428bb2089e789b7fc0991bc3c40f749dff62156597c3e32b2ccaa4e0155d195e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Couplers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dynamical Systems</topic><topic>Exact solutions</topic><topic>Forward problem</topic><topic>Fourier transforms</topic><topic>Impact prediction</topic><topic>Inverse problems</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise prediction</topic><topic>Nonlinear dynamics</topic><topic>Optical fibers</topic><topic>Parameter identification</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Aocheng</creatorcontrib><creatorcontrib>Xu, Suyong</creatorcontrib><creatorcontrib>Liu, Huatao</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Sun, Yunzhou</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Aocheng</au><au>Xu, Suyong</au><au>Liu, Huatao</au><au>Li, Nan</au><au>Sun, Yunzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the soliton dynamics and system parameters in optical fiber couplers</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2025</date><risdate>2025</risdate><volume>113</volume><issue>2</issue><spage>1523</spage><epage>1537</epage><pages>1523-1537</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This work predicts the soliton dynamics and parameter discovery for the coupled nonlinear Schrödinger equations in asymmetric fiber couplers. Using exact one- and two-soliton solutions derived from Hirota’s bilinear method, an extended physics-informed neural networks approach is proposed. This method, which incorporates loss function weight decay and hard constraints, addresses both the inverse and forward problem predictions of the model. Comparisons with analytical solutions demonstrate that this approach effectively predicts soliton transmission and accurately identifies unknown parameters in the inverse problem. Additionally, the study examines how different noise conditions, the number of neuron layers, and dataset selection impact prediction errors.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10235-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2025, Vol.113 (2), p.1523-1537
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3133630087
source SpringerLink Journals
subjects Algorithms
Applications of Nonlinear Dynamics and Chaos Theory
Classical Mechanics
Control
Couplers
Datasets
Deep learning
Dynamical Systems
Exact solutions
Forward problem
Fourier transforms
Impact prediction
Inverse problems
Methods
Neural networks
Noise prediction
Nonlinear dynamics
Optical fibers
Parameter identification
Partial differential equations
Physics
Physics and Astronomy
Schrodinger equation
Solitary waves
Statistical Physics and Dynamical Systems
Velocity
Vibration
title Predicting the soliton dynamics and system parameters in optical fiber couplers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20soliton%20dynamics%20and%20system%20parameters%20in%20optical%20fiber%20couplers&rft.jtitle=Nonlinear%20dynamics&rft.au=Yang,%20Aocheng&rft.date=2025&rft.volume=113&rft.issue=2&rft.spage=1523&rft.epage=1537&rft.pages=1523-1537&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10235-4&rft_dat=%3Cproquest_cross%3E3133630087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133630087&rft_id=info:pmid/&rfr_iscdi=true