Multi-population opinion dynamics model

We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2025, Vol.113 (2), p.1925-1952
Hauptverfasser: Bakaryan, Tigran, Gu, Yuliang, Hovakimyan, Naira, Abdelzaher, Tarek, Lebiere, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1952
container_issue 2
container_start_page 1925
container_title Nonlinear dynamics
container_volume 113
creator Bakaryan, Tigran
Gu, Yuliang
Hovakimyan, Naira
Abdelzaher, Tarek
Lebiere, Christian
description We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either overlooking agents’ similarities or incorporating detailed agent-level connections at the expense of broader applicability. Our model addresses this challenge by leveraging group affiliations to define agent similarities in a scalable manner. The Wasserstein distance is used to quantify the closeness between sub-populations. The dual nature of the proposed method enables the examination of micro-level (individual-level) interactions and macro-level (group-level) dynamics, offering insights into the reciprocal influence between individual behaviors and group dynamics. We rigorously prove the well-posedness of our models and employ simulations to mimic complex social phenomena, demonstrating the framework’s ability to capture the social mechanisms driving public opinion formation.
doi_str_mv 10.1007/s11071-024-10263-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133627953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133627953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-75b779897710b6120846b98103105b02526802a856d49d928a0742361060450d3</originalsourceid><addsrcrecordid>eNp9kLtOwzAYhS0EEuXyAkyVGJgM57djOx5RxU0qYgGpm5U0KUqVxsFOhr49LkFiYzrDuUkfY1eEWwLMXSSCIQ6RcYLQkuOIzUgZyYW2q2M2g00WLFan7CzGLQApkM_YzevYDg3vfT-2xdD4bu77pjtote-KXbOO852v6vaCnWyKNtaXv3rOPh4f3hfPfPn29LK4X_K1AAZuVGmMza0xhFJTush0aXOCJKgSQgmdQxS50lVmKyvyAiYTUhM0MoVKnrPrabcP_mus4-C2fgxdunSSpNTCWCVTSkypdfAxhnrj-tDsirB3BHcA4iYgLgFxP0AcUklOpZjC3Wcd_qb_aX0DShdfQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133627953</pqid></control><display><type>article</type><title>Multi-population opinion dynamics model</title><source>SpringerNature Journals</source><creator>Bakaryan, Tigran ; Gu, Yuliang ; Hovakimyan, Naira ; Abdelzaher, Tarek ; Lebiere, Christian</creator><creatorcontrib>Bakaryan, Tigran ; Gu, Yuliang ; Hovakimyan, Naira ; Abdelzaher, Tarek ; Lebiere, Christian</creatorcontrib><description>We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either overlooking agents’ similarities or incorporating detailed agent-level connections at the expense of broader applicability. Our model addresses this challenge by leveraging group affiliations to define agent similarities in a scalable manner. The Wasserstein distance is used to quantify the closeness between sub-populations. The dual nature of the proposed method enables the examination of micro-level (individual-level) interactions and macro-level (group-level) dynamics, offering insights into the reciprocal influence between individual behaviors and group dynamics. We rigorously prove the well-posedness of our models and employ simulations to mimic complex social phenomena, demonstrating the framework’s ability to capture the social mechanisms driving public opinion formation.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10263-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Applications of Nonlinear Dynamics and Chaos Theory ; Classical Mechanics ; Control ; Dynamical Systems ; Group dynamics ; Influence ; Physics ; Physics and Astronomy ; Similarity ; Social networks ; Statistical Physics and Dynamical Systems ; Vibration</subject><ispartof>Nonlinear dynamics, 2025, Vol.113 (2), p.1925-1952</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-75b779897710b6120846b98103105b02526802a856d49d928a0742361060450d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10263-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10263-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Bakaryan, Tigran</creatorcontrib><creatorcontrib>Gu, Yuliang</creatorcontrib><creatorcontrib>Hovakimyan, Naira</creatorcontrib><creatorcontrib>Abdelzaher, Tarek</creatorcontrib><creatorcontrib>Lebiere, Christian</creatorcontrib><title>Multi-population opinion dynamics model</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either overlooking agents’ similarities or incorporating detailed agent-level connections at the expense of broader applicability. Our model addresses this challenge by leveraging group affiliations to define agent similarities in a scalable manner. The Wasserstein distance is used to quantify the closeness between sub-populations. The dual nature of the proposed method enables the examination of micro-level (individual-level) interactions and macro-level (group-level) dynamics, offering insights into the reciprocal influence between individual behaviors and group dynamics. We rigorously prove the well-posedness of our models and employ simulations to mimic complex social phenomena, demonstrating the framework’s ability to capture the social mechanisms driving public opinion formation.</description><subject>Accuracy</subject><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Group dynamics</subject><subject>Influence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Similarity</subject><subject>Social networks</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAYhS0EEuXyAkyVGJgM57djOx5RxU0qYgGpm5U0KUqVxsFOhr49LkFiYzrDuUkfY1eEWwLMXSSCIQ6RcYLQkuOIzUgZyYW2q2M2g00WLFan7CzGLQApkM_YzevYDg3vfT-2xdD4bu77pjtote-KXbOO852v6vaCnWyKNtaXv3rOPh4f3hfPfPn29LK4X_K1AAZuVGmMza0xhFJTush0aXOCJKgSQgmdQxS50lVmKyvyAiYTUhM0MoVKnrPrabcP_mus4-C2fgxdunSSpNTCWCVTSkypdfAxhnrj-tDsirB3BHcA4iYgLgFxP0AcUklOpZjC3Wcd_qb_aX0DShdfQA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Bakaryan, Tigran</creator><creator>Gu, Yuliang</creator><creator>Hovakimyan, Naira</creator><creator>Abdelzaher, Tarek</creator><creator>Lebiere, Christian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Multi-population opinion dynamics model</title><author>Bakaryan, Tigran ; Gu, Yuliang ; Hovakimyan, Naira ; Abdelzaher, Tarek ; Lebiere, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-75b779897710b6120846b98103105b02526802a856d49d928a0742361060450d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Group dynamics</topic><topic>Influence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Similarity</topic><topic>Social networks</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakaryan, Tigran</creatorcontrib><creatorcontrib>Gu, Yuliang</creatorcontrib><creatorcontrib>Hovakimyan, Naira</creatorcontrib><creatorcontrib>Abdelzaher, Tarek</creatorcontrib><creatorcontrib>Lebiere, Christian</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakaryan, Tigran</au><au>Gu, Yuliang</au><au>Hovakimyan, Naira</au><au>Abdelzaher, Tarek</au><au>Lebiere, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-population opinion dynamics model</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2025</date><risdate>2025</risdate><volume>113</volume><issue>2</issue><spage>1925</spage><epage>1952</epage><pages>1925-1952</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either overlooking agents’ similarities or incorporating detailed agent-level connections at the expense of broader applicability. Our model addresses this challenge by leveraging group affiliations to define agent similarities in a scalable manner. The Wasserstein distance is used to quantify the closeness between sub-populations. The dual nature of the proposed method enables the examination of micro-level (individual-level) interactions and macro-level (group-level) dynamics, offering insights into the reciprocal influence between individual behaviors and group dynamics. We rigorously prove the well-posedness of our models and employ simulations to mimic complex social phenomena, demonstrating the framework’s ability to capture the social mechanisms driving public opinion formation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10263-0</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2025, Vol.113 (2), p.1925-1952
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3133627953
source SpringerNature Journals
subjects Accuracy
Applications of Nonlinear Dynamics and Chaos Theory
Classical Mechanics
Control
Dynamical Systems
Group dynamics
Influence
Physics
Physics and Astronomy
Similarity
Social networks
Statistical Physics and Dynamical Systems
Vibration
title Multi-population opinion dynamics model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-population%20opinion%20dynamics%20model&rft.jtitle=Nonlinear%20dynamics&rft.au=Bakaryan,%20Tigran&rft.date=2025&rft.volume=113&rft.issue=2&rft.spage=1925&rft.epage=1952&rft.pages=1925-1952&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10263-0&rft_dat=%3Cproquest_cross%3E3133627953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133627953&rft_id=info:pmid/&rfr_iscdi=true