Multi-population opinion dynamics model
We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either o...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2025, Vol.113 (2), p.1925-1952 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1952 |
---|---|
container_issue | 2 |
container_start_page | 1925 |
container_title | Nonlinear dynamics |
container_volume | 113 |
creator | Bakaryan, Tigran Gu, Yuliang Hovakimyan, Naira Abdelzaher, Tarek Lebiere, Christian |
description | We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either overlooking agents’ similarities or incorporating detailed agent-level connections at the expense of broader applicability. Our model addresses this challenge by leveraging group affiliations to define agent similarities in a scalable manner. The Wasserstein distance is used to quantify the closeness between sub-populations. The dual nature of the proposed method enables the examination of micro-level (individual-level) interactions and macro-level (group-level) dynamics, offering insights into the reciprocal influence between individual behaviors and group dynamics. We rigorously prove the well-posedness of our models and employ simulations to mimic complex social phenomena, demonstrating the framework’s ability to capture the social mechanisms driving public opinion formation. |
doi_str_mv | 10.1007/s11071-024-10263-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133627953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133627953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-75b779897710b6120846b98103105b02526802a856d49d928a0742361060450d3</originalsourceid><addsrcrecordid>eNp9kLtOwzAYhS0EEuXyAkyVGJgM57djOx5RxU0qYgGpm5U0KUqVxsFOhr49LkFiYzrDuUkfY1eEWwLMXSSCIQ6RcYLQkuOIzUgZyYW2q2M2g00WLFan7CzGLQApkM_YzevYDg3vfT-2xdD4bu77pjtote-KXbOO852v6vaCnWyKNtaXv3rOPh4f3hfPfPn29LK4X_K1AAZuVGmMza0xhFJTush0aXOCJKgSQgmdQxS50lVmKyvyAiYTUhM0MoVKnrPrabcP_mus4-C2fgxdunSSpNTCWCVTSkypdfAxhnrj-tDsirB3BHcA4iYgLgFxP0AcUklOpZjC3Wcd_qb_aX0DShdfQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133627953</pqid></control><display><type>article</type><title>Multi-population opinion dynamics model</title><source>SpringerNature Journals</source><creator>Bakaryan, Tigran ; Gu, Yuliang ; Hovakimyan, Naira ; Abdelzaher, Tarek ; Lebiere, Christian</creator><creatorcontrib>Bakaryan, Tigran ; Gu, Yuliang ; Hovakimyan, Naira ; Abdelzaher, Tarek ; Lebiere, Christian</creatorcontrib><description>We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either overlooking agents’ similarities or incorporating detailed agent-level connections at the expense of broader applicability. Our model addresses this challenge by leveraging group affiliations to define agent similarities in a scalable manner. The Wasserstein distance is used to quantify the closeness between sub-populations. The dual nature of the proposed method enables the examination of micro-level (individual-level) interactions and macro-level (group-level) dynamics, offering insights into the reciprocal influence between individual behaviors and group dynamics. We rigorously prove the well-posedness of our models and employ simulations to mimic complex social phenomena, demonstrating the framework’s ability to capture the social mechanisms driving public opinion formation.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10263-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Applications of Nonlinear Dynamics and Chaos Theory ; Classical Mechanics ; Control ; Dynamical Systems ; Group dynamics ; Influence ; Physics ; Physics and Astronomy ; Similarity ; Social networks ; Statistical Physics and Dynamical Systems ; Vibration</subject><ispartof>Nonlinear dynamics, 2025, Vol.113 (2), p.1925-1952</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-75b779897710b6120846b98103105b02526802a856d49d928a0742361060450d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10263-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10263-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Bakaryan, Tigran</creatorcontrib><creatorcontrib>Gu, Yuliang</creatorcontrib><creatorcontrib>Hovakimyan, Naira</creatorcontrib><creatorcontrib>Abdelzaher, Tarek</creatorcontrib><creatorcontrib>Lebiere, Christian</creatorcontrib><title>Multi-population opinion dynamics model</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either overlooking agents’ similarities or incorporating detailed agent-level connections at the expense of broader applicability. Our model addresses this challenge by leveraging group affiliations to define agent similarities in a scalable manner. The Wasserstein distance is used to quantify the closeness between sub-populations. The dual nature of the proposed method enables the examination of micro-level (individual-level) interactions and macro-level (group-level) dynamics, offering insights into the reciprocal influence between individual behaviors and group dynamics. We rigorously prove the well-posedness of our models and employ simulations to mimic complex social phenomena, demonstrating the framework’s ability to capture the social mechanisms driving public opinion formation.</description><subject>Accuracy</subject><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Group dynamics</subject><subject>Influence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Similarity</subject><subject>Social networks</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAYhS0EEuXyAkyVGJgM57djOx5RxU0qYgGpm5U0KUqVxsFOhr49LkFiYzrDuUkfY1eEWwLMXSSCIQ6RcYLQkuOIzUgZyYW2q2M2g00WLFan7CzGLQApkM_YzevYDg3vfT-2xdD4bu77pjtote-KXbOO852v6vaCnWyKNtaXv3rOPh4f3hfPfPn29LK4X_K1AAZuVGmMza0xhFJTush0aXOCJKgSQgmdQxS50lVmKyvyAiYTUhM0MoVKnrPrabcP_mus4-C2fgxdunSSpNTCWCVTSkypdfAxhnrj-tDsirB3BHcA4iYgLgFxP0AcUklOpZjC3Wcd_qb_aX0DShdfQA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Bakaryan, Tigran</creator><creator>Gu, Yuliang</creator><creator>Hovakimyan, Naira</creator><creator>Abdelzaher, Tarek</creator><creator>Lebiere, Christian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Multi-population opinion dynamics model</title><author>Bakaryan, Tigran ; Gu, Yuliang ; Hovakimyan, Naira ; Abdelzaher, Tarek ; Lebiere, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-75b779897710b6120846b98103105b02526802a856d49d928a0742361060450d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Group dynamics</topic><topic>Influence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Similarity</topic><topic>Social networks</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakaryan, Tigran</creatorcontrib><creatorcontrib>Gu, Yuliang</creatorcontrib><creatorcontrib>Hovakimyan, Naira</creatorcontrib><creatorcontrib>Abdelzaher, Tarek</creatorcontrib><creatorcontrib>Lebiere, Christian</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakaryan, Tigran</au><au>Gu, Yuliang</au><au>Hovakimyan, Naira</au><au>Abdelzaher, Tarek</au><au>Lebiere, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-population opinion dynamics model</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2025</date><risdate>2025</risdate><volume>113</volume><issue>2</issue><spage>1925</spage><epage>1952</epage><pages>1925-1952</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We propose a novel multi-population opinion dynamics model that extends the bounded confidence model to analyze how individual and group interactions influence the emergence of consensus, polarization, or fragmentation. Traditional models often compromise between accuracy and scalability by either overlooking agents’ similarities or incorporating detailed agent-level connections at the expense of broader applicability. Our model addresses this challenge by leveraging group affiliations to define agent similarities in a scalable manner. The Wasserstein distance is used to quantify the closeness between sub-populations. The dual nature of the proposed method enables the examination of micro-level (individual-level) interactions and macro-level (group-level) dynamics, offering insights into the reciprocal influence between individual behaviors and group dynamics. We rigorously prove the well-posedness of our models and employ simulations to mimic complex social phenomena, demonstrating the framework’s ability to capture the social mechanisms driving public opinion formation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10263-0</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2025, Vol.113 (2), p.1925-1952 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3133627953 |
source | SpringerNature Journals |
subjects | Accuracy Applications of Nonlinear Dynamics and Chaos Theory Classical Mechanics Control Dynamical Systems Group dynamics Influence Physics Physics and Astronomy Similarity Social networks Statistical Physics and Dynamical Systems Vibration |
title | Multi-population opinion dynamics model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-population%20opinion%20dynamics%20model&rft.jtitle=Nonlinear%20dynamics&rft.au=Bakaryan,%20Tigran&rft.date=2025&rft.volume=113&rft.issue=2&rft.spage=1925&rft.epage=1952&rft.pages=1925-1952&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10263-0&rft_dat=%3Cproquest_cross%3E3133627953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133627953&rft_id=info:pmid/&rfr_iscdi=true |