Tea waste biomass-derived microporous carbon for improved microwave absorption

Biomass-derived carbon materials with tailored porosities are attracting significant attention for their promising application in microwave absorption owing to their inherent sustainability and unique structural characteristics. This work investigates the effect of porosity on the microwave adsorpti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2024-12, Vol.35 (34), p.2171
Hauptverfasser: Shafi, Sana, Qamar, Tauqeer Haidar, Hassan, Sibt ul, Ma, Lei, Ahmed, Nouman, Abbas, Aumber, Jamali, Sain Bux, Kausar, Khadija, Xiang, Huang Sheng, Deng, Lianwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 34
container_start_page 2171
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Shafi, Sana
Qamar, Tauqeer Haidar
Hassan, Sibt ul
Ma, Lei
Ahmed, Nouman
Abbas, Aumber
Jamali, Sain Bux
Kausar, Khadija
Xiang, Huang Sheng
Deng, Lianwen
description Biomass-derived carbon materials with tailored porosities are attracting significant attention for their promising application in microwave absorption owing to their inherent sustainability and unique structural characteristics. This work investigates the effect of porosity on the microwave adsorption of biomass-derived carbon. Microporous carbon with varying porosities was successfully prepared from green tea waste, and the porous microstructure was systematically modified, with surface areas ranging from ~ 470 to ~ 660 m 2 g −1 , by carbonizing at various temperatures. Porous carbon with optimized porosity exhibits remarkable microwave absorption performance, achieving a minimum reflection loss of − 47.60 dB at a thickness of 2.2 mm and an effective absorption bandwidth (RL 
doi_str_mv 10.1007/s10854-024-13911-8
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3133573043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133573043</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-72aee4b15580933c9aca5b7df949a1e71581c84a530769ee17a15efb40ab236f3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt_wFPAc3RmkzTJUYpfUPRSwVuYbLOyxW7WZNv-fVcreprDPLzzzsPYJcI1ApibgmC1ElApgdIhCnvEJqiNFMpWb8dsAk4boXRVnbKzUtYAMFPSTtjzMhLfUxkiD23aUCliFXO7iyu-aeuc-pTTtvCackgdb1Lm7abP6W-_p13kFErK_dCm7pydNPRR4sXvnLLX-7vl_FEsXh6e5rcL0Y-lBmEqilEF1NqCk7J2VJMOZtU45QijQW2xtoq0BDNzMaIh1LEJCihUctbIKbs65I5dPrexDH6dtrkbT3qJUo6Pg5IjJQ9U6XPbvcf8TyH4b3H-IM6P4vyPOG_lF07_Ydg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133573043</pqid></control><display><type>article</type><title>Tea waste biomass-derived microporous carbon for improved microwave absorption</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shafi, Sana ; Qamar, Tauqeer Haidar ; Hassan, Sibt ul ; Ma, Lei ; Ahmed, Nouman ; Abbas, Aumber ; Jamali, Sain Bux ; Kausar, Khadija ; Xiang, Huang Sheng ; Deng, Lianwen</creator><creatorcontrib>Shafi, Sana ; Qamar, Tauqeer Haidar ; Hassan, Sibt ul ; Ma, Lei ; Ahmed, Nouman ; Abbas, Aumber ; Jamali, Sain Bux ; Kausar, Khadija ; Xiang, Huang Sheng ; Deng, Lianwen</creatorcontrib><description>Biomass-derived carbon materials with tailored porosities are attracting significant attention for their promising application in microwave absorption owing to their inherent sustainability and unique structural characteristics. This work investigates the effect of porosity on the microwave adsorption of biomass-derived carbon. Microporous carbon with varying porosities was successfully prepared from green tea waste, and the porous microstructure was systematically modified, with surface areas ranging from ~ 470 to ~ 660 m 2 g −1 , by carbonizing at various temperatures. Porous carbon with optimized porosity exhibits remarkable microwave absorption performance, achieving a minimum reflection loss of − 47.60 dB at a thickness of 2.2 mm and an effective absorption bandwidth (RL &lt; − 10 dB) of 4.88 GHz. The practical viability of the material was further evaluated by computer simulation technology to simulate radar cross-section (RCS) analysis in real-world far-field scenarios. The results demonstrated that the simulated RCS values of optimum porous structure can reach lower than 20 dB, indicating their potential application in reducing the dispersion and reflection of radar waves. Thus, this study determines the potential of utilizing green tea waste for the development of high-performance, sustainable, and economically viable microwave-absorbing materials with exceptional performance.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-13911-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomass ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Far fields ; Green tea ; Materials Science ; Microwave absorption ; Optical and Electronic Materials ; Porosity ; Radar cross sections ; Surface chemistry ; Technology assessment ; Thickness ; Wave reflection</subject><ispartof>Journal of materials science. Materials in electronics, 2024-12, Vol.35 (34), p.2171</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4561-3068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-13911-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-13911-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shafi, Sana</creatorcontrib><creatorcontrib>Qamar, Tauqeer Haidar</creatorcontrib><creatorcontrib>Hassan, Sibt ul</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Ahmed, Nouman</creatorcontrib><creatorcontrib>Abbas, Aumber</creatorcontrib><creatorcontrib>Jamali, Sain Bux</creatorcontrib><creatorcontrib>Kausar, Khadija</creatorcontrib><creatorcontrib>Xiang, Huang Sheng</creatorcontrib><creatorcontrib>Deng, Lianwen</creatorcontrib><title>Tea waste biomass-derived microporous carbon for improved microwave absorption</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Biomass-derived carbon materials with tailored porosities are attracting significant attention for their promising application in microwave absorption owing to their inherent sustainability and unique structural characteristics. This work investigates the effect of porosity on the microwave adsorption of biomass-derived carbon. Microporous carbon with varying porosities was successfully prepared from green tea waste, and the porous microstructure was systematically modified, with surface areas ranging from ~ 470 to ~ 660 m 2 g −1 , by carbonizing at various temperatures. Porous carbon with optimized porosity exhibits remarkable microwave absorption performance, achieving a minimum reflection loss of − 47.60 dB at a thickness of 2.2 mm and an effective absorption bandwidth (RL &lt; − 10 dB) of 4.88 GHz. The practical viability of the material was further evaluated by computer simulation technology to simulate radar cross-section (RCS) analysis in real-world far-field scenarios. The results demonstrated that the simulated RCS values of optimum porous structure can reach lower than 20 dB, indicating their potential application in reducing the dispersion and reflection of radar waves. Thus, this study determines the potential of utilizing green tea waste for the development of high-performance, sustainable, and economically viable microwave-absorbing materials with exceptional performance.</description><subject>Biomass</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Far fields</subject><subject>Green tea</subject><subject>Materials Science</subject><subject>Microwave absorption</subject><subject>Optical and Electronic Materials</subject><subject>Porosity</subject><subject>Radar cross sections</subject><subject>Surface chemistry</subject><subject>Technology assessment</subject><subject>Thickness</subject><subject>Wave reflection</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt_wFPAc3RmkzTJUYpfUPRSwVuYbLOyxW7WZNv-fVcreprDPLzzzsPYJcI1ApibgmC1ElApgdIhCnvEJqiNFMpWb8dsAk4boXRVnbKzUtYAMFPSTtjzMhLfUxkiD23aUCliFXO7iyu-aeuc-pTTtvCackgdb1Lm7abP6W-_p13kFErK_dCm7pydNPRR4sXvnLLX-7vl_FEsXh6e5rcL0Y-lBmEqilEF1NqCk7J2VJMOZtU45QijQW2xtoq0BDNzMaIh1LEJCihUctbIKbs65I5dPrexDH6dtrkbT3qJUo6Pg5IjJQ9U6XPbvcf8TyH4b3H-IM6P4vyPOG_lF07_Ydg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Shafi, Sana</creator><creator>Qamar, Tauqeer Haidar</creator><creator>Hassan, Sibt ul</creator><creator>Ma, Lei</creator><creator>Ahmed, Nouman</creator><creator>Abbas, Aumber</creator><creator>Jamali, Sain Bux</creator><creator>Kausar, Khadija</creator><creator>Xiang, Huang Sheng</creator><creator>Deng, Lianwen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4561-3068</orcidid></search><sort><creationdate>20241201</creationdate><title>Tea waste biomass-derived microporous carbon for improved microwave absorption</title><author>Shafi, Sana ; Qamar, Tauqeer Haidar ; Hassan, Sibt ul ; Ma, Lei ; Ahmed, Nouman ; Abbas, Aumber ; Jamali, Sain Bux ; Kausar, Khadija ; Xiang, Huang Sheng ; Deng, Lianwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-72aee4b15580933c9aca5b7df949a1e71581c84a530769ee17a15efb40ab236f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomass</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Far fields</topic><topic>Green tea</topic><topic>Materials Science</topic><topic>Microwave absorption</topic><topic>Optical and Electronic Materials</topic><topic>Porosity</topic><topic>Radar cross sections</topic><topic>Surface chemistry</topic><topic>Technology assessment</topic><topic>Thickness</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafi, Sana</creatorcontrib><creatorcontrib>Qamar, Tauqeer Haidar</creatorcontrib><creatorcontrib>Hassan, Sibt ul</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Ahmed, Nouman</creatorcontrib><creatorcontrib>Abbas, Aumber</creatorcontrib><creatorcontrib>Jamali, Sain Bux</creatorcontrib><creatorcontrib>Kausar, Khadija</creatorcontrib><creatorcontrib>Xiang, Huang Sheng</creatorcontrib><creatorcontrib>Deng, Lianwen</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafi, Sana</au><au>Qamar, Tauqeer Haidar</au><au>Hassan, Sibt ul</au><au>Ma, Lei</au><au>Ahmed, Nouman</au><au>Abbas, Aumber</au><au>Jamali, Sain Bux</au><au>Kausar, Khadija</au><au>Xiang, Huang Sheng</au><au>Deng, Lianwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tea waste biomass-derived microporous carbon for improved microwave absorption</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>35</volume><issue>34</issue><spage>2171</spage><pages>2171-</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Biomass-derived carbon materials with tailored porosities are attracting significant attention for their promising application in microwave absorption owing to their inherent sustainability and unique structural characteristics. This work investigates the effect of porosity on the microwave adsorption of biomass-derived carbon. Microporous carbon with varying porosities was successfully prepared from green tea waste, and the porous microstructure was systematically modified, with surface areas ranging from ~ 470 to ~ 660 m 2 g −1 , by carbonizing at various temperatures. Porous carbon with optimized porosity exhibits remarkable microwave absorption performance, achieving a minimum reflection loss of − 47.60 dB at a thickness of 2.2 mm and an effective absorption bandwidth (RL &lt; − 10 dB) of 4.88 GHz. The practical viability of the material was further evaluated by computer simulation technology to simulate radar cross-section (RCS) analysis in real-world far-field scenarios. The results demonstrated that the simulated RCS values of optimum porous structure can reach lower than 20 dB, indicating their potential application in reducing the dispersion and reflection of radar waves. Thus, this study determines the potential of utilizing green tea waste for the development of high-performance, sustainable, and economically viable microwave-absorbing materials with exceptional performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-13911-8</doi><orcidid>https://orcid.org/0000-0002-4561-3068</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024-12, Vol.35 (34), p.2171
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_3133573043
source SpringerLink Journals - AutoHoldings
subjects Biomass
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computer simulation
Far fields
Green tea
Materials Science
Microwave absorption
Optical and Electronic Materials
Porosity
Radar cross sections
Surface chemistry
Technology assessment
Thickness
Wave reflection
title Tea waste biomass-derived microporous carbon for improved microwave absorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tea%20waste%20biomass-derived%20microporous%20carbon%20for%20improved%20microwave%20absorption&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Shafi,%20Sana&rft.date=2024-12-01&rft.volume=35&rft.issue=34&rft.spage=2171&rft.pages=2171-&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-13911-8&rft_dat=%3Cproquest_sprin%3E3133573043%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133573043&rft_id=info:pmid/&rfr_iscdi=true