A Method for Fabricating CMOS Back-End-of-Line-Compatible Solid-State Nanopore Devices

Solid-state nanopores, nm-sized holes in thin, freestanding membranes, are powerful single-molecule sensors capable of interrogating a wide range of target analytes, from small molecules to large polymers. Interestingly, due to their high spatial resolution, nanopores can also identify tags on long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Mohamed Yassine Bouhamidi, Dai, Chunhui, Michel, Stephan, Nag, Joyeeta, Kinney, Justin, Wan, Lei, Waugh, Matthew, Briggs, Kyle, Jordan Katine, Tabard-Cossa, Vincent, Bedau, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mohamed Yassine Bouhamidi
Dai, Chunhui
Michel, Stephan
Nag, Joyeeta
Kinney, Justin
Wan, Lei
Waugh, Matthew
Briggs, Kyle
Jordan Katine
Tabard-Cossa, Vincent
Bedau, Daniel
description Solid-state nanopores, nm-sized holes in thin, freestanding membranes, are powerful single-molecule sensors capable of interrogating a wide range of target analytes, from small molecules to large polymers. Interestingly, due to their high spatial resolution, nanopores can also identify tags on long polymers, making them an attractive option as the reading element for molecular information storage strategies. To fully leverage the compact and robust nature of solid-state nanopores, however, they will need to be packaged in a highly parallelized manner with on-chip electronic signal processing capabilities to rapidly and accurately handle the data generated. Additionally, the membrane itself must have specific physical, chemical, and electrical properties to ensure sufficient signal-to-noise ratios are achieved, with the traditional membrane material being SiNX . Unfortunately, the typical method of deposition, low-pressure vapour deposition, requires temperatures beyond the thermal budget of CMOS back-end-of-line integration processes, limiting the potential to generate an on-chip solution. To this end, we explore various lower-temperature deposition techniques that are BEOL-compatible to generate SiNx membranes for solid-state nanopore use, and successfully demonstrate the ability for these alternative methods to generate low-noise nanopores that are capable of performing single-molecule experiments.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133543256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133543256</sourcerecordid><originalsourceid>FETCH-proquest_journals_31335432563</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBb1HS44B2rSVFetioM_Q8VV0vZWU2tuTaLPr4MP4HSG7_RYJKSc8nkixICNvW_iOBbpTCglI3ZewB7DjSqoycFGF86UOhh7hWx_zGGpyztf24pTzXfGIs_o0X29aBFyak3F86ADwkFb6sghrPBtSvQj1q9163H865BNNutTtuWdo-cLfbg09HL2Sxc5lVIlUqhU_nd9APrNP10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133543256</pqid></control><display><type>article</type><title>A Method for Fabricating CMOS Back-End-of-Line-Compatible Solid-State Nanopore Devices</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Mohamed Yassine Bouhamidi ; Dai, Chunhui ; Michel, Stephan ; Nag, Joyeeta ; Kinney, Justin ; Wan, Lei ; Waugh, Matthew ; Briggs, Kyle ; Jordan Katine ; Tabard-Cossa, Vincent ; Bedau, Daniel</creator><creatorcontrib>Mohamed Yassine Bouhamidi ; Dai, Chunhui ; Michel, Stephan ; Nag, Joyeeta ; Kinney, Justin ; Wan, Lei ; Waugh, Matthew ; Briggs, Kyle ; Jordan Katine ; Tabard-Cossa, Vincent ; Bedau, Daniel</creatorcontrib><description>Solid-state nanopores, nm-sized holes in thin, freestanding membranes, are powerful single-molecule sensors capable of interrogating a wide range of target analytes, from small molecules to large polymers. Interestingly, due to their high spatial resolution, nanopores can also identify tags on long polymers, making them an attractive option as the reading element for molecular information storage strategies. To fully leverage the compact and robust nature of solid-state nanopores, however, they will need to be packaged in a highly parallelized manner with on-chip electronic signal processing capabilities to rapidly and accurately handle the data generated. Additionally, the membrane itself must have specific physical, chemical, and electrical properties to ensure sufficient signal-to-noise ratios are achieved, with the traditional membrane material being SiNX . Unfortunately, the typical method of deposition, low-pressure vapour deposition, requires temperatures beyond the thermal budget of CMOS back-end-of-line integration processes, limiting the potential to generate an on-chip solution. To this end, we explore various lower-temperature deposition techniques that are BEOL-compatible to generate SiNx membranes for solid-state nanopore use, and successfully demonstrate the ability for these alternative methods to generate low-noise nanopores that are capable of performing single-molecule experiments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>CMOS ; Electrical properties ; Information storage ; Low pressure ; Membranes ; Noise generation ; Polymers ; Signal processing ; Solid state ; Spatial resolution ; Vapor deposition</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mohamed Yassine Bouhamidi</creatorcontrib><creatorcontrib>Dai, Chunhui</creatorcontrib><creatorcontrib>Michel, Stephan</creatorcontrib><creatorcontrib>Nag, Joyeeta</creatorcontrib><creatorcontrib>Kinney, Justin</creatorcontrib><creatorcontrib>Wan, Lei</creatorcontrib><creatorcontrib>Waugh, Matthew</creatorcontrib><creatorcontrib>Briggs, Kyle</creatorcontrib><creatorcontrib>Jordan Katine</creatorcontrib><creatorcontrib>Tabard-Cossa, Vincent</creatorcontrib><creatorcontrib>Bedau, Daniel</creatorcontrib><title>A Method for Fabricating CMOS Back-End-of-Line-Compatible Solid-State Nanopore Devices</title><title>arXiv.org</title><description>Solid-state nanopores, nm-sized holes in thin, freestanding membranes, are powerful single-molecule sensors capable of interrogating a wide range of target analytes, from small molecules to large polymers. Interestingly, due to their high spatial resolution, nanopores can also identify tags on long polymers, making them an attractive option as the reading element for molecular information storage strategies. To fully leverage the compact and robust nature of solid-state nanopores, however, they will need to be packaged in a highly parallelized manner with on-chip electronic signal processing capabilities to rapidly and accurately handle the data generated. Additionally, the membrane itself must have specific physical, chemical, and electrical properties to ensure sufficient signal-to-noise ratios are achieved, with the traditional membrane material being SiNX . Unfortunately, the typical method of deposition, low-pressure vapour deposition, requires temperatures beyond the thermal budget of CMOS back-end-of-line integration processes, limiting the potential to generate an on-chip solution. To this end, we explore various lower-temperature deposition techniques that are BEOL-compatible to generate SiNx membranes for solid-state nanopore use, and successfully demonstrate the ability for these alternative methods to generate low-noise nanopores that are capable of performing single-molecule experiments.</description><subject>CMOS</subject><subject>Electrical properties</subject><subject>Information storage</subject><subject>Low pressure</subject><subject>Membranes</subject><subject>Noise generation</subject><subject>Polymers</subject><subject>Signal processing</subject><subject>Solid state</subject><subject>Spatial resolution</subject><subject>Vapor deposition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBb1HS44B2rSVFetioM_Q8VV0vZWU2tuTaLPr4MP4HSG7_RYJKSc8nkixICNvW_iOBbpTCglI3ZewB7DjSqoycFGF86UOhh7hWx_zGGpyztf24pTzXfGIs_o0X29aBFyak3F86ADwkFb6sghrPBtSvQj1q9163H865BNNutTtuWdo-cLfbg09HL2Sxc5lVIlUqhU_nd9APrNP10</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Mohamed Yassine Bouhamidi</creator><creator>Dai, Chunhui</creator><creator>Michel, Stephan</creator><creator>Nag, Joyeeta</creator><creator>Kinney, Justin</creator><creator>Wan, Lei</creator><creator>Waugh, Matthew</creator><creator>Briggs, Kyle</creator><creator>Jordan Katine</creator><creator>Tabard-Cossa, Vincent</creator><creator>Bedau, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241126</creationdate><title>A Method for Fabricating CMOS Back-End-of-Line-Compatible Solid-State Nanopore Devices</title><author>Mohamed Yassine Bouhamidi ; Dai, Chunhui ; Michel, Stephan ; Nag, Joyeeta ; Kinney, Justin ; Wan, Lei ; Waugh, Matthew ; Briggs, Kyle ; Jordan Katine ; Tabard-Cossa, Vincent ; Bedau, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31335432563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CMOS</topic><topic>Electrical properties</topic><topic>Information storage</topic><topic>Low pressure</topic><topic>Membranes</topic><topic>Noise generation</topic><topic>Polymers</topic><topic>Signal processing</topic><topic>Solid state</topic><topic>Spatial resolution</topic><topic>Vapor deposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamed Yassine Bouhamidi</creatorcontrib><creatorcontrib>Dai, Chunhui</creatorcontrib><creatorcontrib>Michel, Stephan</creatorcontrib><creatorcontrib>Nag, Joyeeta</creatorcontrib><creatorcontrib>Kinney, Justin</creatorcontrib><creatorcontrib>Wan, Lei</creatorcontrib><creatorcontrib>Waugh, Matthew</creatorcontrib><creatorcontrib>Briggs, Kyle</creatorcontrib><creatorcontrib>Jordan Katine</creatorcontrib><creatorcontrib>Tabard-Cossa, Vincent</creatorcontrib><creatorcontrib>Bedau, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed Yassine Bouhamidi</au><au>Dai, Chunhui</au><au>Michel, Stephan</au><au>Nag, Joyeeta</au><au>Kinney, Justin</au><au>Wan, Lei</au><au>Waugh, Matthew</au><au>Briggs, Kyle</au><au>Jordan Katine</au><au>Tabard-Cossa, Vincent</au><au>Bedau, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Method for Fabricating CMOS Back-End-of-Line-Compatible Solid-State Nanopore Devices</atitle><jtitle>arXiv.org</jtitle><date>2024-11-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Solid-state nanopores, nm-sized holes in thin, freestanding membranes, are powerful single-molecule sensors capable of interrogating a wide range of target analytes, from small molecules to large polymers. Interestingly, due to their high spatial resolution, nanopores can also identify tags on long polymers, making them an attractive option as the reading element for molecular information storage strategies. To fully leverage the compact and robust nature of solid-state nanopores, however, they will need to be packaged in a highly parallelized manner with on-chip electronic signal processing capabilities to rapidly and accurately handle the data generated. Additionally, the membrane itself must have specific physical, chemical, and electrical properties to ensure sufficient signal-to-noise ratios are achieved, with the traditional membrane material being SiNX . Unfortunately, the typical method of deposition, low-pressure vapour deposition, requires temperatures beyond the thermal budget of CMOS back-end-of-line integration processes, limiting the potential to generate an on-chip solution. To this end, we explore various lower-temperature deposition techniques that are BEOL-compatible to generate SiNx membranes for solid-state nanopore use, and successfully demonstrate the ability for these alternative methods to generate low-noise nanopores that are capable of performing single-molecule experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3133543256
source Open Access: Freely Accessible Journals by multiple vendors
subjects CMOS
Electrical properties
Information storage
Low pressure
Membranes
Noise generation
Polymers
Signal processing
Solid state
Spatial resolution
Vapor deposition
title A Method for Fabricating CMOS Back-End-of-Line-Compatible Solid-State Nanopore Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Method%20for%20Fabricating%20CMOS%20Back-End-of-Line-Compatible%20Solid-State%20Nanopore%20Devices&rft.jtitle=arXiv.org&rft.au=Mohamed%20Yassine%20Bouhamidi&rft.date=2024-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133543256%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133543256&rft_id=info:pmid/&rfr_iscdi=true