Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification

White Matter Hyperintensities (WMH) are key neuroradiological markers of small vessel disease present in brain MRI. Assessment of WMH is important in research and clinics. However, WMH are challenging to segment due to their high variability in shape, location, size, poorly defined borders, and simi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Philps, Ben, Maria del C Valdes Hernandez, Chen, Qin, Clancy, Una, Sakka, Eleni, Susana Munoz Maniega, Bastin, Mark E, Jochems, Angela C C, Wardlaw, Joanna M, Bernabeu, Miguel O, Alzheimers Disease Neuroimaging Initiative
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Philps, Ben
Maria del C Valdes Hernandez
Chen, Qin
Clancy, Una
Sakka, Eleni
Susana Munoz Maniega
Bastin, Mark E
Jochems, Angela C C
Wardlaw, Joanna M
Bernabeu, Miguel O
Alzheimers Disease Neuroimaging Initiative
description White Matter Hyperintensities (WMH) are key neuroradiological markers of small vessel disease present in brain MRI. Assessment of WMH is important in research and clinics. However, WMH are challenging to segment due to their high variability in shape, location, size, poorly defined borders, and similar intensity profile to other pathologies (e.g stroke lesions) and artefacts (e.g head motion). In this work, we apply the most effective techniques for uncertainty quantification (UQ) in segmentation to the WMH segmentation task across multiple test-time data distributions. We find a combination of Stochastic Segmentation Networks with Deep Ensembles yields the highest Dice and lowest Absolute Volume Difference % (AVD) score on in-domain and out-of-distribution data. We demonstrate the downstream utility of UQ, proposing a novel method for classification of the clinical Fazekas score using spatial features extracted for WMH segmentation and UQ maps. We show that incorporating WMH uncertainty information improves Fazekas classification performance and calibration, with median class balanced accuracy for classification models with (UQ and spatial WMH features)/(spatial WMH features)/(WMH volume only) of 0.71/0.66/0.60 in the Deep WMH and 0.82/0.77/0.73 in the Periventricular WMH regions respectively. We demonstrate that stochastic UQ techniques with high sample diversity can improve the detection of poor quality segmentations. Finally, we qualitatively analyse the semantic information captured by UQ techniques and demonstrate that uncertainty can highlight areas where there is ambiguity between WMH and stroke lesions, while identifying clusters of small WMH in deep white matter unsegmented by the model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133537982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133537982</sourcerecordid><originalsourceid>FETCH-proquest_journals_31335379823</originalsourceid><addsrcrecordid>eNqNjc1qAkEQhAchoBjfocGzsM64_pxF8eItIUdpdnu1dXdGp3sC5h1854wkp5xyKqrqK6pnBta56WQ5s7ZvRiLnoijsfGHL0g3M491XFBXZ6x1uCb1ywxUqBw9NiPBxYiXYoypF2N2vFDNJXjjjQseOvP7ANSlVKiDc5gwa5DZFEkBfA3fXGD6fJmnoUKmGLX7RBeXP5at5abAVGv3q0Iy3m7f1bpL3t0Sih3NI0efq4KbOlW6xWlr3P-obZspYNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133537982</pqid></control><display><type>article</type><title>Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification</title><source>Free E- Journals</source><creator>Philps, Ben ; Maria del C Valdes Hernandez ; Chen, Qin ; Clancy, Una ; Sakka, Eleni ; Susana Munoz Maniega ; Bastin, Mark E ; Jochems, Angela C C ; Wardlaw, Joanna M ; Bernabeu, Miguel O ; Alzheimers Disease Neuroimaging Initiative</creator><creatorcontrib>Philps, Ben ; Maria del C Valdes Hernandez ; Chen, Qin ; Clancy, Una ; Sakka, Eleni ; Susana Munoz Maniega ; Bastin, Mark E ; Jochems, Angela C C ; Wardlaw, Joanna M ; Bernabeu, Miguel O ; Alzheimers Disease Neuroimaging Initiative</creatorcontrib><description>White Matter Hyperintensities (WMH) are key neuroradiological markers of small vessel disease present in brain MRI. Assessment of WMH is important in research and clinics. However, WMH are challenging to segment due to their high variability in shape, location, size, poorly defined borders, and similar intensity profile to other pathologies (e.g stroke lesions) and artefacts (e.g head motion). In this work, we apply the most effective techniques for uncertainty quantification (UQ) in segmentation to the WMH segmentation task across multiple test-time data distributions. We find a combination of Stochastic Segmentation Networks with Deep Ensembles yields the highest Dice and lowest Absolute Volume Difference % (AVD) score on in-domain and out-of-distribution data. We demonstrate the downstream utility of UQ, proposing a novel method for classification of the clinical Fazekas score using spatial features extracted for WMH segmentation and UQ maps. We show that incorporating WMH uncertainty information improves Fazekas classification performance and calibration, with median class balanced accuracy for classification models with (UQ and spatial WMH features)/(spatial WMH features)/(WMH volume only) of 0.71/0.66/0.60 in the Deep WMH and 0.82/0.77/0.73 in the Periventricular WMH regions respectively. We demonstrate that stochastic UQ techniques with high sample diversity can improve the detection of poor quality segmentations. Finally, we qualitatively analyse the semantic information captured by UQ techniques and demonstrate that uncertainty can highlight areas where there is ambiguity between WMH and stroke lesions, while identifying clusters of small WMH in deep white matter unsegmented by the model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Cluster analysis ; Feature extraction ; Head movement ; Image segmentation ; Lesions ; Spatial data ; Uncertainty analysis</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Philps, Ben</creatorcontrib><creatorcontrib>Maria del C Valdes Hernandez</creatorcontrib><creatorcontrib>Chen, Qin</creatorcontrib><creatorcontrib>Clancy, Una</creatorcontrib><creatorcontrib>Sakka, Eleni</creatorcontrib><creatorcontrib>Susana Munoz Maniega</creatorcontrib><creatorcontrib>Bastin, Mark E</creatorcontrib><creatorcontrib>Jochems, Angela C C</creatorcontrib><creatorcontrib>Wardlaw, Joanna M</creatorcontrib><creatorcontrib>Bernabeu, Miguel O</creatorcontrib><creatorcontrib>Alzheimers Disease Neuroimaging Initiative</creatorcontrib><title>Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification</title><title>arXiv.org</title><description>White Matter Hyperintensities (WMH) are key neuroradiological markers of small vessel disease present in brain MRI. Assessment of WMH is important in research and clinics. However, WMH are challenging to segment due to their high variability in shape, location, size, poorly defined borders, and similar intensity profile to other pathologies (e.g stroke lesions) and artefacts (e.g head motion). In this work, we apply the most effective techniques for uncertainty quantification (UQ) in segmentation to the WMH segmentation task across multiple test-time data distributions. We find a combination of Stochastic Segmentation Networks with Deep Ensembles yields the highest Dice and lowest Absolute Volume Difference % (AVD) score on in-domain and out-of-distribution data. We demonstrate the downstream utility of UQ, proposing a novel method for classification of the clinical Fazekas score using spatial features extracted for WMH segmentation and UQ maps. We show that incorporating WMH uncertainty information improves Fazekas classification performance and calibration, with median class balanced accuracy for classification models with (UQ and spatial WMH features)/(spatial WMH features)/(WMH volume only) of 0.71/0.66/0.60 in the Deep WMH and 0.82/0.77/0.73 in the Periventricular WMH regions respectively. We demonstrate that stochastic UQ techniques with high sample diversity can improve the detection of poor quality segmentations. Finally, we qualitatively analyse the semantic information captured by UQ techniques and demonstrate that uncertainty can highlight areas where there is ambiguity between WMH and stroke lesions, while identifying clusters of small WMH in deep white matter unsegmented by the model.</description><subject>Classification</subject><subject>Cluster analysis</subject><subject>Feature extraction</subject><subject>Head movement</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Spatial data</subject><subject>Uncertainty analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjc1qAkEQhAchoBjfocGzsM64_pxF8eItIUdpdnu1dXdGp3sC5h1854wkp5xyKqrqK6pnBta56WQ5s7ZvRiLnoijsfGHL0g3M491XFBXZ6x1uCb1ywxUqBw9NiPBxYiXYoypF2N2vFDNJXjjjQseOvP7ANSlVKiDc5gwa5DZFEkBfA3fXGD6fJmnoUKmGLX7RBeXP5at5abAVGv3q0Iy3m7f1bpL3t0Sih3NI0efq4KbOlW6xWlr3P-obZspYNw</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Philps, Ben</creator><creator>Maria del C Valdes Hernandez</creator><creator>Chen, Qin</creator><creator>Clancy, Una</creator><creator>Sakka, Eleni</creator><creator>Susana Munoz Maniega</creator><creator>Bastin, Mark E</creator><creator>Jochems, Angela C C</creator><creator>Wardlaw, Joanna M</creator><creator>Bernabeu, Miguel O</creator><creator>Alzheimers Disease Neuroimaging Initiative</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241126</creationdate><title>Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification</title><author>Philps, Ben ; Maria del C Valdes Hernandez ; Chen, Qin ; Clancy, Una ; Sakka, Eleni ; Susana Munoz Maniega ; Bastin, Mark E ; Jochems, Angela C C ; Wardlaw, Joanna M ; Bernabeu, Miguel O ; Alzheimers Disease Neuroimaging Initiative</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31335379823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Cluster analysis</topic><topic>Feature extraction</topic><topic>Head movement</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Spatial data</topic><topic>Uncertainty analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Philps, Ben</creatorcontrib><creatorcontrib>Maria del C Valdes Hernandez</creatorcontrib><creatorcontrib>Chen, Qin</creatorcontrib><creatorcontrib>Clancy, Una</creatorcontrib><creatorcontrib>Sakka, Eleni</creatorcontrib><creatorcontrib>Susana Munoz Maniega</creatorcontrib><creatorcontrib>Bastin, Mark E</creatorcontrib><creatorcontrib>Jochems, Angela C C</creatorcontrib><creatorcontrib>Wardlaw, Joanna M</creatorcontrib><creatorcontrib>Bernabeu, Miguel O</creatorcontrib><creatorcontrib>Alzheimers Disease Neuroimaging Initiative</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philps, Ben</au><au>Maria del C Valdes Hernandez</au><au>Chen, Qin</au><au>Clancy, Una</au><au>Sakka, Eleni</au><au>Susana Munoz Maniega</au><au>Bastin, Mark E</au><au>Jochems, Angela C C</au><au>Wardlaw, Joanna M</au><au>Bernabeu, Miguel O</au><au>Alzheimers Disease Neuroimaging Initiative</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification</atitle><jtitle>arXiv.org</jtitle><date>2024-11-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>White Matter Hyperintensities (WMH) are key neuroradiological markers of small vessel disease present in brain MRI. Assessment of WMH is important in research and clinics. However, WMH are challenging to segment due to their high variability in shape, location, size, poorly defined borders, and similar intensity profile to other pathologies (e.g stroke lesions) and artefacts (e.g head motion). In this work, we apply the most effective techniques for uncertainty quantification (UQ) in segmentation to the WMH segmentation task across multiple test-time data distributions. We find a combination of Stochastic Segmentation Networks with Deep Ensembles yields the highest Dice and lowest Absolute Volume Difference % (AVD) score on in-domain and out-of-distribution data. We demonstrate the downstream utility of UQ, proposing a novel method for classification of the clinical Fazekas score using spatial features extracted for WMH segmentation and UQ maps. We show that incorporating WMH uncertainty information improves Fazekas classification performance and calibration, with median class balanced accuracy for classification models with (UQ and spatial WMH features)/(spatial WMH features)/(WMH volume only) of 0.71/0.66/0.60 in the Deep WMH and 0.82/0.77/0.73 in the Periventricular WMH regions respectively. We demonstrate that stochastic UQ techniques with high sample diversity can improve the detection of poor quality segmentations. Finally, we qualitatively analyse the semantic information captured by UQ techniques and demonstrate that uncertainty can highlight areas where there is ambiguity between WMH and stroke lesions, while identifying clusters of small WMH in deep white matter unsegmented by the model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3133537982
source Free E- Journals
subjects Classification
Cluster analysis
Feature extraction
Head movement
Image segmentation
Lesions
Spatial data
Uncertainty analysis
title Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Uncertainty%20quantification%20for%20White%20Matter%20Hyperintensity%20segmentation%20detects%20silent%20failures%20and%20improves%20automated%20Fazekas%20quantification&rft.jtitle=arXiv.org&rft.au=Philps,%20Ben&rft.date=2024-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133537982%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133537982&rft_id=info:pmid/&rfr_iscdi=true