SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation
The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to recons...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2024-11, Vol.34 (11), p.11142-11155 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11155 |
---|---|
container_issue | 11 |
container_start_page | 11142 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 34 |
creator | Yang, Chen Li, Guorong Wang, Shuhui Su, Li Qing, Laiyun Huang, Qingming |
description | The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to reconstructing clear images by exploring temporal-spatial correlation to depress noises. The main idea of our method is to restore the continuous dynamic process of real scenes in a latent space and learn the temporal correlations in a fine-grained manner. Furthermore, to model the dynamic process more effectively, we design a conditional ODE where the latent state of each timestamp is conditioned on the observed spike data. Subsequently, forward and backward inferences are conducted through the ODE to investigate the correlations between the representation of the target timestamp and the information from both past and future contexts. Additionally, we incorporate a Unet structure with a pixel-wise attention mechanism at each level to learn spatial correlations. Experimental results demonstrate that our method outperforms state-of-the-art methods across several metrics. |
doi_str_mv | 10.1109/TCSVT.2024.3417812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3133497908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10568206</ieee_id><sourcerecordid>3133497908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c928-e0cb819b4227ca80256f6aa85155f4626875944c4315566b84942dc723a9651b3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKt_QFwEXE_NexJ3MlYtFAt2UHATMmlGU9uZNplZ-O9NHwtX93I4372HA8A1RiOMkbori_l7OSKIsBFlOJeYnIAB5lxmhCB-mnbEcSYJ5ufgIsYlQphJlg_A53zjf9zscXwPJ2vz5eCbs20Tu9DbzrcNrNsA9xZYmLULBn747hu-uj6YFZyFhW9M-IWPvq5dcE3nkzre9mbHXoKz2qyiuzrOISifxmXxkk1nz5PiYZpZRWTmkK0kVhUjJLdGIsJFLYyRPKWvmSBC5lwxZhlNghCVZIqRhc0JNUpwXNEhuD2c3YR227vY6WXbhyZ91BRTylSukEwucnDZ0MYYXK03wa9Tdo2R3lWo9xXqXYX6WGGCbg6Qd879A7iQBAn6B3K6a58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133497908</pqid></control><display><type>article</type><title>SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation</title><source>IEEE Xplore</source><creator>Yang, Chen ; Li, Guorong ; Wang, Shuhui ; Su, Li ; Qing, Laiyun ; Huang, Qingming</creator><creatorcontrib>Yang, Chen ; Li, Guorong ; Wang, Shuhui ; Su, Li ; Qing, Laiyun ; Huang, Qingming</creatorcontrib><description>The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to reconstructing clear images by exploring temporal-spatial correlation to depress noises. The main idea of our method is to restore the continuous dynamic process of real scenes in a latent space and learn the temporal correlations in a fine-grained manner. Furthermore, to model the dynamic process more effectively, we design a conditional ODE where the latent state of each timestamp is conditioned on the observed spike data. Subsequently, forward and backward inferences are conducted through the ODE to investigate the correlations between the representation of the target timestamp and the information from both past and future contexts. Additionally, we incorporate a Unet structure with a pixel-wise attention mechanism at each level to learn spatial correlations. Experimental results demonstrate that our method outperforms state-of-the-art methods across several metrics.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3417812</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Correlation ; Differential equations ; Image quality ; Image reconstruction ; Image restoration ; neural ordinary differential equation ; Noise measurement ; Ordinary differential equations ; Spatiotemporal phenomena ; Spike camera ; Streaming media ; temporal-spatial correlation</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-11, Vol.34 (11), p.11142-11155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c928-e0cb819b4227ca80256f6aa85155f4626875944c4315566b84942dc723a9651b3</cites><orcidid>0000-0001-7542-296X ; 0000-0003-3954-2387 ; 0009-0000-4052-3795 ; 0000-0001-5358-2786 ; 0000-0001-9923-5034 ; 0000-0002-5931-0527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10568206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10568206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Li, Guorong</creatorcontrib><creatorcontrib>Wang, Shuhui</creatorcontrib><creatorcontrib>Su, Li</creatorcontrib><creatorcontrib>Qing, Laiyun</creatorcontrib><creatorcontrib>Huang, Qingming</creatorcontrib><title>SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to reconstructing clear images by exploring temporal-spatial correlation to depress noises. The main idea of our method is to restore the continuous dynamic process of real scenes in a latent space and learn the temporal correlations in a fine-grained manner. Furthermore, to model the dynamic process more effectively, we design a conditional ODE where the latent state of each timestamp is conditioned on the observed spike data. Subsequently, forward and backward inferences are conducted through the ODE to investigate the correlations between the representation of the target timestamp and the information from both past and future contexts. Additionally, we incorporate a Unet structure with a pixel-wise attention mechanism at each level to learn spatial correlations. Experimental results demonstrate that our method outperforms state-of-the-art methods across several metrics.</description><subject>Cameras</subject><subject>Correlation</subject><subject>Differential equations</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>neural ordinary differential equation</subject><subject>Noise measurement</subject><subject>Ordinary differential equations</subject><subject>Spatiotemporal phenomena</subject><subject>Spike camera</subject><subject>Streaming media</subject><subject>temporal-spatial correlation</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKt_QFwEXE_NexJ3MlYtFAt2UHATMmlGU9uZNplZ-O9NHwtX93I4372HA8A1RiOMkbori_l7OSKIsBFlOJeYnIAB5lxmhCB-mnbEcSYJ5ufgIsYlQphJlg_A53zjf9zscXwPJ2vz5eCbs20Tu9DbzrcNrNsA9xZYmLULBn747hu-uj6YFZyFhW9M-IWPvq5dcE3nkzre9mbHXoKz2qyiuzrOISifxmXxkk1nz5PiYZpZRWTmkK0kVhUjJLdGIsJFLYyRPKWvmSBC5lwxZhlNghCVZIqRhc0JNUpwXNEhuD2c3YR227vY6WXbhyZ91BRTylSukEwucnDZ0MYYXK03wa9Tdo2R3lWo9xXqXYX6WGGCbg6Qd879A7iQBAn6B3K6a58</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Yang, Chen</creator><creator>Li, Guorong</creator><creator>Wang, Shuhui</creator><creator>Su, Li</creator><creator>Qing, Laiyun</creator><creator>Huang, Qingming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7542-296X</orcidid><orcidid>https://orcid.org/0000-0003-3954-2387</orcidid><orcidid>https://orcid.org/0009-0000-4052-3795</orcidid><orcidid>https://orcid.org/0000-0001-5358-2786</orcidid><orcidid>https://orcid.org/0000-0001-9923-5034</orcidid><orcidid>https://orcid.org/0000-0002-5931-0527</orcidid></search><sort><creationdate>202411</creationdate><title>SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation</title><author>Yang, Chen ; Li, Guorong ; Wang, Shuhui ; Su, Li ; Qing, Laiyun ; Huang, Qingming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c928-e0cb819b4227ca80256f6aa85155f4626875944c4315566b84942dc723a9651b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Correlation</topic><topic>Differential equations</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>neural ordinary differential equation</topic><topic>Noise measurement</topic><topic>Ordinary differential equations</topic><topic>Spatiotemporal phenomena</topic><topic>Spike camera</topic><topic>Streaming media</topic><topic>temporal-spatial correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Li, Guorong</creatorcontrib><creatorcontrib>Wang, Shuhui</creatorcontrib><creatorcontrib>Su, Li</creatorcontrib><creatorcontrib>Qing, Laiyun</creatorcontrib><creatorcontrib>Huang, Qingming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Chen</au><au>Li, Guorong</au><au>Wang, Shuhui</au><au>Su, Li</au><au>Qing, Laiyun</au><au>Huang, Qingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-11</date><risdate>2024</risdate><volume>34</volume><issue>11</issue><spage>11142</spage><epage>11155</epage><pages>11142-11155</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to reconstructing clear images by exploring temporal-spatial correlation to depress noises. The main idea of our method is to restore the continuous dynamic process of real scenes in a latent space and learn the temporal correlations in a fine-grained manner. Furthermore, to model the dynamic process more effectively, we design a conditional ODE where the latent state of each timestamp is conditioned on the observed spike data. Subsequently, forward and backward inferences are conducted through the ODE to investigate the correlations between the representation of the target timestamp and the information from both past and future contexts. Additionally, we incorporate a Unet structure with a pixel-wise attention mechanism at each level to learn spatial correlations. Experimental results demonstrate that our method outperforms state-of-the-art methods across several metrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3417812</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7542-296X</orcidid><orcidid>https://orcid.org/0000-0003-3954-2387</orcidid><orcidid>https://orcid.org/0009-0000-4052-3795</orcidid><orcidid>https://orcid.org/0000-0001-5358-2786</orcidid><orcidid>https://orcid.org/0000-0001-9923-5034</orcidid><orcidid>https://orcid.org/0000-0002-5931-0527</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2024-11, Vol.34 (11), p.11142-11155 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_3133497908 |
source | IEEE Xplore |
subjects | Cameras Correlation Differential equations Image quality Image reconstruction Image restoration neural ordinary differential equation Noise measurement Ordinary differential equations Spatiotemporal phenomena Spike camera Streaming media temporal-spatial correlation |
title | SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SpikeODE:%20Image%20Reconstruction%20for%20Spike%20Camera%20With%20Neural%20Ordinary%20Differential%20Equation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Yang,%20Chen&rft.date=2024-11&rft.volume=34&rft.issue=11&rft.spage=11142&rft.epage=11155&rft.pages=11142-11155&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3417812&rft_dat=%3Cproquest_RIE%3E3133497908%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133497908&rft_id=info:pmid/&rft_ieee_id=10568206&rfr_iscdi=true |