SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation

The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to recons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-11, Vol.34 (11), p.11142-11155
Hauptverfasser: Yang, Chen, Li, Guorong, Wang, Shuhui, Su, Li, Qing, Laiyun, Huang, Qingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11155
container_issue 11
container_start_page 11142
container_title IEEE transactions on circuits and systems for video technology
container_volume 34
creator Yang, Chen
Li, Guorong
Wang, Shuhui
Su, Li
Qing, Laiyun
Huang, Qingming
description The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to reconstructing clear images by exploring temporal-spatial correlation to depress noises. The main idea of our method is to restore the continuous dynamic process of real scenes in a latent space and learn the temporal correlations in a fine-grained manner. Furthermore, to model the dynamic process more effectively, we design a conditional ODE where the latent state of each timestamp is conditioned on the observed spike data. Subsequently, forward and backward inferences are conducted through the ODE to investigate the correlations between the representation of the target timestamp and the information from both past and future contexts. Additionally, we incorporate a Unet structure with a pixel-wise attention mechanism at each level to learn spatial correlations. Experimental results demonstrate that our method outperforms state-of-the-art methods across several metrics.
doi_str_mv 10.1109/TCSVT.2024.3417812
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3133497908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10568206</ieee_id><sourcerecordid>3133497908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c928-e0cb819b4227ca80256f6aa85155f4626875944c4315566b84942dc723a9651b3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKt_QFwEXE_NexJ3MlYtFAt2UHATMmlGU9uZNplZ-O9NHwtX93I4372HA8A1RiOMkbori_l7OSKIsBFlOJeYnIAB5lxmhCB-mnbEcSYJ5ufgIsYlQphJlg_A53zjf9zscXwPJ2vz5eCbs20Tu9DbzrcNrNsA9xZYmLULBn747hu-uj6YFZyFhW9M-IWPvq5dcE3nkzre9mbHXoKz2qyiuzrOISifxmXxkk1nz5PiYZpZRWTmkK0kVhUjJLdGIsJFLYyRPKWvmSBC5lwxZhlNghCVZIqRhc0JNUpwXNEhuD2c3YR227vY6WXbhyZ91BRTylSukEwucnDZ0MYYXK03wa9Tdo2R3lWo9xXqXYX6WGGCbg6Qd879A7iQBAn6B3K6a58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133497908</pqid></control><display><type>article</type><title>SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation</title><source>IEEE Xplore</source><creator>Yang, Chen ; Li, Guorong ; Wang, Shuhui ; Su, Li ; Qing, Laiyun ; Huang, Qingming</creator><creatorcontrib>Yang, Chen ; Li, Guorong ; Wang, Shuhui ; Su, Li ; Qing, Laiyun ; Huang, Qingming</creatorcontrib><description>The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to reconstructing clear images by exploring temporal-spatial correlation to depress noises. The main idea of our method is to restore the continuous dynamic process of real scenes in a latent space and learn the temporal correlations in a fine-grained manner. Furthermore, to model the dynamic process more effectively, we design a conditional ODE where the latent state of each timestamp is conditioned on the observed spike data. Subsequently, forward and backward inferences are conducted through the ODE to investigate the correlations between the representation of the target timestamp and the information from both past and future contexts. Additionally, we incorporate a Unet structure with a pixel-wise attention mechanism at each level to learn spatial correlations. Experimental results demonstrate that our method outperforms state-of-the-art methods across several metrics.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3417812</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Correlation ; Differential equations ; Image quality ; Image reconstruction ; Image restoration ; neural ordinary differential equation ; Noise measurement ; Ordinary differential equations ; Spatiotemporal phenomena ; Spike camera ; Streaming media ; temporal-spatial correlation</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-11, Vol.34 (11), p.11142-11155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c928-e0cb819b4227ca80256f6aa85155f4626875944c4315566b84942dc723a9651b3</cites><orcidid>0000-0001-7542-296X ; 0000-0003-3954-2387 ; 0009-0000-4052-3795 ; 0000-0001-5358-2786 ; 0000-0001-9923-5034 ; 0000-0002-5931-0527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10568206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10568206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Li, Guorong</creatorcontrib><creatorcontrib>Wang, Shuhui</creatorcontrib><creatorcontrib>Su, Li</creatorcontrib><creatorcontrib>Qing, Laiyun</creatorcontrib><creatorcontrib>Huang, Qingming</creatorcontrib><title>SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to reconstructing clear images by exploring temporal-spatial correlation to depress noises. The main idea of our method is to restore the continuous dynamic process of real scenes in a latent space and learn the temporal correlations in a fine-grained manner. Furthermore, to model the dynamic process more effectively, we design a conditional ODE where the latent state of each timestamp is conditioned on the observed spike data. Subsequently, forward and backward inferences are conducted through the ODE to investigate the correlations between the representation of the target timestamp and the information from both past and future contexts. Additionally, we incorporate a Unet structure with a pixel-wise attention mechanism at each level to learn spatial correlations. Experimental results demonstrate that our method outperforms state-of-the-art methods across several metrics.</description><subject>Cameras</subject><subject>Correlation</subject><subject>Differential equations</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>neural ordinary differential equation</subject><subject>Noise measurement</subject><subject>Ordinary differential equations</subject><subject>Spatiotemporal phenomena</subject><subject>Spike camera</subject><subject>Streaming media</subject><subject>temporal-spatial correlation</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKt_QFwEXE_NexJ3MlYtFAt2UHATMmlGU9uZNplZ-O9NHwtX93I4372HA8A1RiOMkbori_l7OSKIsBFlOJeYnIAB5lxmhCB-mnbEcSYJ5ufgIsYlQphJlg_A53zjf9zscXwPJ2vz5eCbs20Tu9DbzrcNrNsA9xZYmLULBn747hu-uj6YFZyFhW9M-IWPvq5dcE3nkzre9mbHXoKz2qyiuzrOISifxmXxkk1nz5PiYZpZRWTmkK0kVhUjJLdGIsJFLYyRPKWvmSBC5lwxZhlNghCVZIqRhc0JNUpwXNEhuD2c3YR227vY6WXbhyZ91BRTylSukEwucnDZ0MYYXK03wa9Tdo2R3lWo9xXqXYX6WGGCbg6Qd879A7iQBAn6B3K6a58</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Yang, Chen</creator><creator>Li, Guorong</creator><creator>Wang, Shuhui</creator><creator>Su, Li</creator><creator>Qing, Laiyun</creator><creator>Huang, Qingming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7542-296X</orcidid><orcidid>https://orcid.org/0000-0003-3954-2387</orcidid><orcidid>https://orcid.org/0009-0000-4052-3795</orcidid><orcidid>https://orcid.org/0000-0001-5358-2786</orcidid><orcidid>https://orcid.org/0000-0001-9923-5034</orcidid><orcidid>https://orcid.org/0000-0002-5931-0527</orcidid></search><sort><creationdate>202411</creationdate><title>SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation</title><author>Yang, Chen ; Li, Guorong ; Wang, Shuhui ; Su, Li ; Qing, Laiyun ; Huang, Qingming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c928-e0cb819b4227ca80256f6aa85155f4626875944c4315566b84942dc723a9651b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Correlation</topic><topic>Differential equations</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>neural ordinary differential equation</topic><topic>Noise measurement</topic><topic>Ordinary differential equations</topic><topic>Spatiotemporal phenomena</topic><topic>Spike camera</topic><topic>Streaming media</topic><topic>temporal-spatial correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Li, Guorong</creatorcontrib><creatorcontrib>Wang, Shuhui</creatorcontrib><creatorcontrib>Su, Li</creatorcontrib><creatorcontrib>Qing, Laiyun</creatorcontrib><creatorcontrib>Huang, Qingming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Chen</au><au>Li, Guorong</au><au>Wang, Shuhui</au><au>Su, Li</au><au>Qing, Laiyun</au><au>Huang, Qingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-11</date><risdate>2024</risdate><volume>34</volume><issue>11</issue><spage>11142</spage><epage>11155</epage><pages>11142-11155</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>The recently invented retina-inspired spike camera has shown great potential for capturing dynamic scenes. However, reconstructing high-quality images from the binary spike data remains a challenge due to the existence of noises in the camera. This paper proposes SpikeODE, a novel approach to reconstructing clear images by exploring temporal-spatial correlation to depress noises. The main idea of our method is to restore the continuous dynamic process of real scenes in a latent space and learn the temporal correlations in a fine-grained manner. Furthermore, to model the dynamic process more effectively, we design a conditional ODE where the latent state of each timestamp is conditioned on the observed spike data. Subsequently, forward and backward inferences are conducted through the ODE to investigate the correlations between the representation of the target timestamp and the information from both past and future contexts. Additionally, we incorporate a Unet structure with a pixel-wise attention mechanism at each level to learn spatial correlations. Experimental results demonstrate that our method outperforms state-of-the-art methods across several metrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3417812</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7542-296X</orcidid><orcidid>https://orcid.org/0000-0003-3954-2387</orcidid><orcidid>https://orcid.org/0009-0000-4052-3795</orcidid><orcidid>https://orcid.org/0000-0001-5358-2786</orcidid><orcidid>https://orcid.org/0000-0001-9923-5034</orcidid><orcidid>https://orcid.org/0000-0002-5931-0527</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-11, Vol.34 (11), p.11142-11155
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_3133497908
source IEEE Xplore
subjects Cameras
Correlation
Differential equations
Image quality
Image reconstruction
Image restoration
neural ordinary differential equation
Noise measurement
Ordinary differential equations
Spatiotemporal phenomena
Spike camera
Streaming media
temporal-spatial correlation
title SpikeODE: Image Reconstruction for Spike Camera With Neural Ordinary Differential Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SpikeODE:%20Image%20Reconstruction%20for%20Spike%20Camera%20With%20Neural%20Ordinary%20Differential%20Equation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Yang,%20Chen&rft.date=2024-11&rft.volume=34&rft.issue=11&rft.spage=11142&rft.epage=11155&rft.pages=11142-11155&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3417812&rft_dat=%3Cproquest_RIE%3E3133497908%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133497908&rft_id=info:pmid/&rft_ieee_id=10568206&rfr_iscdi=true