A 7.6-mW IR-UWB Receiver Achieving −17-dBm Blocker Resilience With a Linear RF Front-End
This article presents a low power, linear RF front-end (RF-FE) for an 802.15.4a/z compatible impulse-radio ultrawideband (IR-UWB) receiver. A complementary topology-based LNA is proposed with a bandpass filter (BPF) integrated into its output. The LNA includes a complementary common gate (CCG) stage...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2024-12, Vol.59 (12), p.3993-4008 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4008 |
---|---|
container_issue | 12 |
container_start_page | 3993 |
container_title | IEEE journal of solid-state circuits |
container_volume | 59 |
creator | Narayan Bhat, Anoop Mateman, Paul Xu, Zule Vis, Peter Detterer, Paul Kasanadi Ramachandra, Gururaja Baykal, Yunus Konijnenburg, Mario Liu, Yao-Hong Bachmann, Christian Zhang, Peng |
description | This article presents a low power, linear RF front-end (RF-FE) for an 802.15.4a/z compatible impulse-radio ultrawideband (IR-UWB) receiver. A complementary topology-based LNA is proposed with a bandpass filter (BPF) integrated into its output. The LNA includes a complementary common gate (CCG) stage to isolate the BPF from the undesired loading of the LNA's input stage to achieve a high Q and 5- to 10-GHz tuning range. This CCG stage relaxes a trade-off between headroom and linearity. Furthermore, capacitive and transformer coupling techniques are proposed in the LNA to increase its OP1dB and second-order intermodulation (IM2) by 4 and 27 dB, respectively, compared to noncomplementary counterparts without these techniques. An automatic feedback-based back-gate biasing technique is proposed for the variable gain transconductance amplifier (VGTA) following the BPF to increase VGTA's transconductance range for a given width over length (W/L). The receiver is fabricated in a 22-nm fully depleted silicon on insulator (FDSOI) CMOS. The measured results over the 5- to 10-GHz RF frequency range show a minimum noise figure (NF) of 6 dB and a blocker resilience of −17 dBm at 7.6-mW power dissipation. |
doi_str_mv | 10.1109/JSSC.2024.3445452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3133494459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10662966</ieee_id><sourcerecordid>3133494459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-5e3bdaf5fa274e68f59b64e40755473b145c2165558ecfd5699ffb9e79046b953</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsFYfQHAx4HriTOYvs2xLq5WC0FoqbkIyuWOntkmdpAXfwLWP6JOYUheuLpdzzr2cD6FrRiPGqLl7nM0GUUxjEXEhpJDxCeowKRPCNH85RR1KWUJMTOk5uqjrVbsKkbAOeu1hHSmyWeDxlMwXfTwFC34PAffs0sPel2_45-ubaVL0N7i_rux7q02h9msPpQW88M0SZ3jiS8haYYRHoSobMiyLS3TmsnUNV3-zi-aj4fPggUye7seD3oRYplVDJPC8yJx0WawFqMRJkysBgmopheY5E9LGTMm2DFhXSGWMc7kBbahQuZG8i26Pd7eh-thB3aSrahfK9mXKGefCtEBM62JHlw1VXQdw6Tb4TRY-U0bTA8L0gDA9IEz_ELaZm2PGA8A_v1KxUYr_AiaYaiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133494459</pqid></control><display><type>article</type><title>A 7.6-mW IR-UWB Receiver Achieving −17-dBm Blocker Resilience With a Linear RF Front-End</title><source>IEEE Electronic Library (IEL)</source><creator>Narayan Bhat, Anoop ; Mateman, Paul ; Xu, Zule ; Vis, Peter ; Detterer, Paul ; Kasanadi Ramachandra, Gururaja ; Baykal, Yunus ; Konijnenburg, Mario ; Liu, Yao-Hong ; Bachmann, Christian ; Zhang, Peng</creator><creatorcontrib>Narayan Bhat, Anoop ; Mateman, Paul ; Xu, Zule ; Vis, Peter ; Detterer, Paul ; Kasanadi Ramachandra, Gururaja ; Baykal, Yunus ; Konijnenburg, Mario ; Liu, Yao-Hong ; Bachmann, Christian ; Zhang, Peng</creatorcontrib><description>This article presents a low power, linear RF front-end (RF-FE) for an 802.15.4a/z compatible impulse-radio ultrawideband (IR-UWB) receiver. A complementary topology-based LNA is proposed with a bandpass filter (BPF) integrated into its output. The LNA includes a complementary common gate (CCG) stage to isolate the BPF from the undesired loading of the LNA's input stage to achieve a high Q and 5- to 10-GHz tuning range. This CCG stage relaxes a trade-off between headroom and linearity. Furthermore, capacitive and transformer coupling techniques are proposed in the LNA to increase its OP1dB and second-order intermodulation (IM2) by 4 and 27 dB, respectively, compared to noncomplementary counterparts without these techniques. An automatic feedback-based back-gate biasing technique is proposed for the variable gain transconductance amplifier (VGTA) following the BPF to increase VGTA's transconductance range for a given width over length (W/L). The receiver is fabricated in a 22-nm fully depleted silicon on insulator (FDSOI) CMOS. The measured results over the 5- to 10-GHz RF frequency range show a minimum noise figure (NF) of 6 dB and a blocker resilience of −17 dBm at 7.6-mW power dissipation.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2024.3445452</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>back-gate feedback ; Band-pass filters ; bandpass filter (BPF) ; Bandpass filters ; complementary common gate (CCG) LNA ; Energy dissipation ; Frequency ranges ; IEEE 802.15 Standard ; impulse-radio ultrawideband (IR-UWB) ; Intermodulation ; Inverters ; Linearity ; Noise ; Noise levels ; Noise measurement ; Radio frequency ; Receivers ; Resilience ; second-order intermodulation (IM2) ; Topology ; Transconductance ; transformer coupling ; Ultrawideband ; Variable gain</subject><ispartof>IEEE journal of solid-state circuits, 2024-12, Vol.59 (12), p.3993-4008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-5e3bdaf5fa274e68f59b64e40755473b145c2165558ecfd5699ffb9e79046b953</cites><orcidid>0000-0001-8016-0888 ; 0000-0002-8295-8778 ; 0000-0001-9329-1721 ; 0000-0002-2746-5284 ; 0000-0002-3256-6741 ; 0000-0001-6899-3860 ; 0000-0003-1247-3457 ; 0000-0003-0396-8933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10662966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10662966$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Narayan Bhat, Anoop</creatorcontrib><creatorcontrib>Mateman, Paul</creatorcontrib><creatorcontrib>Xu, Zule</creatorcontrib><creatorcontrib>Vis, Peter</creatorcontrib><creatorcontrib>Detterer, Paul</creatorcontrib><creatorcontrib>Kasanadi Ramachandra, Gururaja</creatorcontrib><creatorcontrib>Baykal, Yunus</creatorcontrib><creatorcontrib>Konijnenburg, Mario</creatorcontrib><creatorcontrib>Liu, Yao-Hong</creatorcontrib><creatorcontrib>Bachmann, Christian</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><title>A 7.6-mW IR-UWB Receiver Achieving −17-dBm Blocker Resilience With a Linear RF Front-End</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article presents a low power, linear RF front-end (RF-FE) for an 802.15.4a/z compatible impulse-radio ultrawideband (IR-UWB) receiver. A complementary topology-based LNA is proposed with a bandpass filter (BPF) integrated into its output. The LNA includes a complementary common gate (CCG) stage to isolate the BPF from the undesired loading of the LNA's input stage to achieve a high Q and 5- to 10-GHz tuning range. This CCG stage relaxes a trade-off between headroom and linearity. Furthermore, capacitive and transformer coupling techniques are proposed in the LNA to increase its OP1dB and second-order intermodulation (IM2) by 4 and 27 dB, respectively, compared to noncomplementary counterparts without these techniques. An automatic feedback-based back-gate biasing technique is proposed for the variable gain transconductance amplifier (VGTA) following the BPF to increase VGTA's transconductance range for a given width over length (W/L). The receiver is fabricated in a 22-nm fully depleted silicon on insulator (FDSOI) CMOS. The measured results over the 5- to 10-GHz RF frequency range show a minimum noise figure (NF) of 6 dB and a blocker resilience of −17 dBm at 7.6-mW power dissipation.</description><subject>back-gate feedback</subject><subject>Band-pass filters</subject><subject>bandpass filter (BPF)</subject><subject>Bandpass filters</subject><subject>complementary common gate (CCG) LNA</subject><subject>Energy dissipation</subject><subject>Frequency ranges</subject><subject>IEEE 802.15 Standard</subject><subject>impulse-radio ultrawideband (IR-UWB)</subject><subject>Intermodulation</subject><subject>Inverters</subject><subject>Linearity</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Noise measurement</subject><subject>Radio frequency</subject><subject>Receivers</subject><subject>Resilience</subject><subject>second-order intermodulation (IM2)</subject><subject>Topology</subject><subject>Transconductance</subject><subject>transformer coupling</subject><subject>Ultrawideband</subject><subject>Variable gain</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhQdRsFYfQHAx4HriTOYvs2xLq5WC0FoqbkIyuWOntkmdpAXfwLWP6JOYUheuLpdzzr2cD6FrRiPGqLl7nM0GUUxjEXEhpJDxCeowKRPCNH85RR1KWUJMTOk5uqjrVbsKkbAOeu1hHSmyWeDxlMwXfTwFC34PAffs0sPel2_45-ubaVL0N7i_rux7q02h9msPpQW88M0SZ3jiS8haYYRHoSobMiyLS3TmsnUNV3-zi-aj4fPggUye7seD3oRYplVDJPC8yJx0WawFqMRJkysBgmopheY5E9LGTMm2DFhXSGWMc7kBbahQuZG8i26Pd7eh-thB3aSrahfK9mXKGefCtEBM62JHlw1VXQdw6Tb4TRY-U0bTA8L0gDA9IEz_ELaZm2PGA8A_v1KxUYr_AiaYaiM</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Narayan Bhat, Anoop</creator><creator>Mateman, Paul</creator><creator>Xu, Zule</creator><creator>Vis, Peter</creator><creator>Detterer, Paul</creator><creator>Kasanadi Ramachandra, Gururaja</creator><creator>Baykal, Yunus</creator><creator>Konijnenburg, Mario</creator><creator>Liu, Yao-Hong</creator><creator>Bachmann, Christian</creator><creator>Zhang, Peng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8016-0888</orcidid><orcidid>https://orcid.org/0000-0002-8295-8778</orcidid><orcidid>https://orcid.org/0000-0001-9329-1721</orcidid><orcidid>https://orcid.org/0000-0002-2746-5284</orcidid><orcidid>https://orcid.org/0000-0002-3256-6741</orcidid><orcidid>https://orcid.org/0000-0001-6899-3860</orcidid><orcidid>https://orcid.org/0000-0003-1247-3457</orcidid><orcidid>https://orcid.org/0000-0003-0396-8933</orcidid></search><sort><creationdate>202412</creationdate><title>A 7.6-mW IR-UWB Receiver Achieving −17-dBm Blocker Resilience With a Linear RF Front-End</title><author>Narayan Bhat, Anoop ; Mateman, Paul ; Xu, Zule ; Vis, Peter ; Detterer, Paul ; Kasanadi Ramachandra, Gururaja ; Baykal, Yunus ; Konijnenburg, Mario ; Liu, Yao-Hong ; Bachmann, Christian ; Zhang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-5e3bdaf5fa274e68f59b64e40755473b145c2165558ecfd5699ffb9e79046b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>back-gate feedback</topic><topic>Band-pass filters</topic><topic>bandpass filter (BPF)</topic><topic>Bandpass filters</topic><topic>complementary common gate (CCG) LNA</topic><topic>Energy dissipation</topic><topic>Frequency ranges</topic><topic>IEEE 802.15 Standard</topic><topic>impulse-radio ultrawideband (IR-UWB)</topic><topic>Intermodulation</topic><topic>Inverters</topic><topic>Linearity</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Noise measurement</topic><topic>Radio frequency</topic><topic>Receivers</topic><topic>Resilience</topic><topic>second-order intermodulation (IM2)</topic><topic>Topology</topic><topic>Transconductance</topic><topic>transformer coupling</topic><topic>Ultrawideband</topic><topic>Variable gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayan Bhat, Anoop</creatorcontrib><creatorcontrib>Mateman, Paul</creatorcontrib><creatorcontrib>Xu, Zule</creatorcontrib><creatorcontrib>Vis, Peter</creatorcontrib><creatorcontrib>Detterer, Paul</creatorcontrib><creatorcontrib>Kasanadi Ramachandra, Gururaja</creatorcontrib><creatorcontrib>Baykal, Yunus</creatorcontrib><creatorcontrib>Konijnenburg, Mario</creatorcontrib><creatorcontrib>Liu, Yao-Hong</creatorcontrib><creatorcontrib>Bachmann, Christian</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narayan Bhat, Anoop</au><au>Mateman, Paul</au><au>Xu, Zule</au><au>Vis, Peter</au><au>Detterer, Paul</au><au>Kasanadi Ramachandra, Gururaja</au><au>Baykal, Yunus</au><au>Konijnenburg, Mario</au><au>Liu, Yao-Hong</au><au>Bachmann, Christian</au><au>Zhang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 7.6-mW IR-UWB Receiver Achieving −17-dBm Blocker Resilience With a Linear RF Front-End</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2024-12</date><risdate>2024</risdate><volume>59</volume><issue>12</issue><spage>3993</spage><epage>4008</epage><pages>3993-4008</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article presents a low power, linear RF front-end (RF-FE) for an 802.15.4a/z compatible impulse-radio ultrawideband (IR-UWB) receiver. A complementary topology-based LNA is proposed with a bandpass filter (BPF) integrated into its output. The LNA includes a complementary common gate (CCG) stage to isolate the BPF from the undesired loading of the LNA's input stage to achieve a high Q and 5- to 10-GHz tuning range. This CCG stage relaxes a trade-off between headroom and linearity. Furthermore, capacitive and transformer coupling techniques are proposed in the LNA to increase its OP1dB and second-order intermodulation (IM2) by 4 and 27 dB, respectively, compared to noncomplementary counterparts without these techniques. An automatic feedback-based back-gate biasing technique is proposed for the variable gain transconductance amplifier (VGTA) following the BPF to increase VGTA's transconductance range for a given width over length (W/L). The receiver is fabricated in a 22-nm fully depleted silicon on insulator (FDSOI) CMOS. The measured results over the 5- to 10-GHz RF frequency range show a minimum noise figure (NF) of 6 dB and a blocker resilience of −17 dBm at 7.6-mW power dissipation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2024.3445452</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8016-0888</orcidid><orcidid>https://orcid.org/0000-0002-8295-8778</orcidid><orcidid>https://orcid.org/0000-0001-9329-1721</orcidid><orcidid>https://orcid.org/0000-0002-2746-5284</orcidid><orcidid>https://orcid.org/0000-0002-3256-6741</orcidid><orcidid>https://orcid.org/0000-0001-6899-3860</orcidid><orcidid>https://orcid.org/0000-0003-1247-3457</orcidid><orcidid>https://orcid.org/0000-0003-0396-8933</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2024-12, Vol.59 (12), p.3993-4008 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_3133494459 |
source | IEEE Electronic Library (IEL) |
subjects | back-gate feedback Band-pass filters bandpass filter (BPF) Bandpass filters complementary common gate (CCG) LNA Energy dissipation Frequency ranges IEEE 802.15 Standard impulse-radio ultrawideband (IR-UWB) Intermodulation Inverters Linearity Noise Noise levels Noise measurement Radio frequency Receivers Resilience second-order intermodulation (IM2) Topology Transconductance transformer coupling Ultrawideband Variable gain |
title | A 7.6-mW IR-UWB Receiver Achieving −17-dBm Blocker Resilience With a Linear RF Front-End |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%207.6-mW%20IR-UWB%20Receiver%20Achieving%20%E2%88%9217-dBm%20Blocker%20Resilience%20With%20a%20Linear%20RF%20Front-End&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Narayan%20Bhat,%20Anoop&rft.date=2024-12&rft.volume=59&rft.issue=12&rft.spage=3993&rft.epage=4008&rft.pages=3993-4008&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2024.3445452&rft_dat=%3Cproquest_RIE%3E3133494459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133494459&rft_id=info:pmid/&rft_ieee_id=10662966&rfr_iscdi=true |