Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy

In this paper, we study boundary controllability for the linear extension problem of a wave equation with space-dependent coefficients and having an internal degeneracy. For this purpose, we mainly focus on the well-posedness and the boundary null controllability of a relaxed version of the original...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied analysis 2024-12, Vol.30 (2), p.325-343
Hauptverfasser: Azzaoui, Mohamed, Salhi, Jawad, Tilioua, Mouhcine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 2
container_start_page 325
container_title Journal of applied analysis
container_volume 30
creator Azzaoui, Mohamed
Salhi, Jawad
Tilioua, Mouhcine
description In this paper, we study boundary controllability for the linear extension problem of a wave equation with space-dependent coefficients and having an internal degeneracy. For this purpose, we mainly focus on the well-posedness and the boundary null controllability of a relaxed version of the original problem, namely, to some degenerate transmission problem. The key ingredient is to derive direct and inverse inequalities for the associated homogeneous degenerate adjoint problem. By these inequalities, we deduce that the transmission problem has a unique solution by transposition and this solution is null controllable. Moreover, we give an explicit formula of the controllability time.
doi_str_mv 10.1515/jaa-2023-0125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133420887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133420887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-c7cd103c1a4777a0c41c24125b77dbeeb2bc259ae2da0b22fc242043b223603c3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKtL9wHX0TxmJlNcafEFBTe6DpnMHU2ZJm0y09J_7y0V3LhJTrjnHnI-Qq4FvxWlKO-W1jLJpWJcyPKETERdzVjFa3mKupAlq2a8PicXOS85l7Kqignxj3EMrU176mIYUux72_jeD3vaxUS3Nnnb9IBD6DrvPIQh0xiAtX4FIfsYbE93dgsUNqMd8E13fvimPgyQPCa08AUBknX7S3LW2T7D1e89JZ_PTx_zV7Z4f3mbPyyYk1oNzGnXCq6csIXW2nJXCCcLLNRo3TYAjWycLGcWZGt5I2WHU8kLhVJVuKem5OaYu05xM0IezDKOCf-ZjRJKobmuNbrY0eVSzDlBZ9bJr5CDEdwcaBqkaQ40zYEm-u-P_p3tsRrWSuMexV_4_3so8PwBOZ19eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133420887</pqid></control><display><type>article</type><title>Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy</title><source>Alma/SFX Local Collection</source><creator>Azzaoui, Mohamed ; Salhi, Jawad ; Tilioua, Mouhcine</creator><creatorcontrib>Azzaoui, Mohamed ; Salhi, Jawad ; Tilioua, Mouhcine</creatorcontrib><description>In this paper, we study boundary controllability for the linear extension problem of a wave equation with space-dependent coefficients and having an internal degeneracy. For this purpose, we mainly focus on the well-posedness and the boundary null controllability of a relaxed version of the original problem, namely, to some degenerate transmission problem. The key ingredient is to derive direct and inverse inequalities for the associated homogeneous degenerate adjoint problem. By these inequalities, we deduce that the transmission problem has a unique solution by transposition and this solution is null controllable. Moreover, we give an explicit formula of the controllability time.</description><identifier>ISSN: 1425-6908</identifier><identifier>EISSN: 1869-6082</identifier><identifier>DOI: 10.1515/jaa-2023-0125</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>35L80 ; 93B05 ; 93B07 ; 93C05 ; 93C20 ; Boundary controllability ; Controllability ; degenerate wave equation ; Hilbert uniqueness method ; Inequalities ; interior degeneracy ; variable coefficients ; Wave equations</subject><ispartof>Journal of applied analysis, 2024-12, Vol.30 (2), p.325-343</ispartof><rights>2024 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-c7cd103c1a4777a0c41c24125b77dbeeb2bc259ae2da0b22fc242043b223603c3</cites><orcidid>0000-0001-9290-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Azzaoui, Mohamed</creatorcontrib><creatorcontrib>Salhi, Jawad</creatorcontrib><creatorcontrib>Tilioua, Mouhcine</creatorcontrib><title>Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy</title><title>Journal of applied analysis</title><description>In this paper, we study boundary controllability for the linear extension problem of a wave equation with space-dependent coefficients and having an internal degeneracy. For this purpose, we mainly focus on the well-posedness and the boundary null controllability of a relaxed version of the original problem, namely, to some degenerate transmission problem. The key ingredient is to derive direct and inverse inequalities for the associated homogeneous degenerate adjoint problem. By these inequalities, we deduce that the transmission problem has a unique solution by transposition and this solution is null controllable. Moreover, we give an explicit formula of the controllability time.</description><subject>35L80</subject><subject>93B05</subject><subject>93B07</subject><subject>93C05</subject><subject>93C20</subject><subject>Boundary controllability</subject><subject>Controllability</subject><subject>degenerate wave equation</subject><subject>Hilbert uniqueness method</subject><subject>Inequalities</subject><subject>interior degeneracy</subject><subject>variable coefficients</subject><subject>Wave equations</subject><issn>1425-6908</issn><issn>1869-6082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkEtLAzEUhYMoWKtL9wHX0TxmJlNcafEFBTe6DpnMHU2ZJm0y09J_7y0V3LhJTrjnHnI-Qq4FvxWlKO-W1jLJpWJcyPKETERdzVjFa3mKupAlq2a8PicXOS85l7Kqignxj3EMrU176mIYUux72_jeD3vaxUS3Nnnb9IBD6DrvPIQh0xiAtX4FIfsYbE93dgsUNqMd8E13fvimPgyQPCa08AUBknX7S3LW2T7D1e89JZ_PTx_zV7Z4f3mbPyyYk1oNzGnXCq6csIXW2nJXCCcLLNRo3TYAjWycLGcWZGt5I2WHU8kLhVJVuKem5OaYu05xM0IezDKOCf-ZjRJKobmuNbrY0eVSzDlBZ9bJr5CDEdwcaBqkaQ40zYEm-u-P_p3tsRrWSuMexV_4_3so8PwBOZ19eQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Azzaoui, Mohamed</creator><creator>Salhi, Jawad</creator><creator>Tilioua, Mouhcine</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9290-9681</orcidid></search><sort><creationdate>20241201</creationdate><title>Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy</title><author>Azzaoui, Mohamed ; Salhi, Jawad ; Tilioua, Mouhcine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-c7cd103c1a4777a0c41c24125b77dbeeb2bc259ae2da0b22fc242043b223603c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>35L80</topic><topic>93B05</topic><topic>93B07</topic><topic>93C05</topic><topic>93C20</topic><topic>Boundary controllability</topic><topic>Controllability</topic><topic>degenerate wave equation</topic><topic>Hilbert uniqueness method</topic><topic>Inequalities</topic><topic>interior degeneracy</topic><topic>variable coefficients</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzaoui, Mohamed</creatorcontrib><creatorcontrib>Salhi, Jawad</creatorcontrib><creatorcontrib>Tilioua, Mouhcine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzaoui, Mohamed</au><au>Salhi, Jawad</au><au>Tilioua, Mouhcine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy</atitle><jtitle>Journal of applied analysis</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><spage>325</spage><epage>343</epage><pages>325-343</pages><issn>1425-6908</issn><eissn>1869-6082</eissn><abstract>In this paper, we study boundary controllability for the linear extension problem of a wave equation with space-dependent coefficients and having an internal degeneracy. For this purpose, we mainly focus on the well-posedness and the boundary null controllability of a relaxed version of the original problem, namely, to some degenerate transmission problem. The key ingredient is to derive direct and inverse inequalities for the associated homogeneous degenerate adjoint problem. By these inequalities, we deduce that the transmission problem has a unique solution by transposition and this solution is null controllable. Moreover, we give an explicit formula of the controllability time.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jaa-2023-0125</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9290-9681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1425-6908
ispartof Journal of applied analysis, 2024-12, Vol.30 (2), p.325-343
issn 1425-6908
1869-6082
language eng
recordid cdi_proquest_journals_3133420887
source Alma/SFX Local Collection
subjects 35L80
93B05
93B07
93C05
93C20
Boundary controllability
Controllability
degenerate wave equation
Hilbert uniqueness method
Inequalities
interior degeneracy
variable coefficients
Wave equations
title Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20controllability%20for%20variable%20coefficients%20one-dimensional%20wave%20equation%20with%20interior%20degeneracy&rft.jtitle=Journal%20of%20applied%20analysis&rft.au=Azzaoui,%20Mohamed&rft.date=2024-12-01&rft.volume=30&rft.issue=2&rft.spage=325&rft.epage=343&rft.pages=325-343&rft.issn=1425-6908&rft.eissn=1869-6082&rft_id=info:doi/10.1515/jaa-2023-0125&rft_dat=%3Cproquest_cross%3E3133420887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133420887&rft_id=info:pmid/&rfr_iscdi=true