Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach

The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-11, Vol.16 (22), p.3212
Hauptverfasser: Guo, Yingjie, Kim, Ji-Yeon, Park, Jeonghyun, Lee, Jung-Min, Park, Sung-Gwan, Lee, Eui-Jong, Lee, Sangyoup, Hwang, Moon-Hyun, Zheng, Guili, Ren, Xianghao, Chae, Kyu-Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 3212
container_title Water (Basel)
container_volume 16
creator Guo, Yingjie
Kim, Ji-Yeon
Park, Jeonghyun
Lee, Jung-Min
Park, Sung-Gwan
Lee, Eui-Jong
Lee, Sangyoup
Hwang, Moon-Hyun
Zheng, Guili
Ren, Xianghao
Chae, Kyu-Jung
description The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effectively captures the variability in the influent characteristics and fluctuations within each reactor of the A2O+AO process. By employing a time-lag approach based on the hydraulic retention time (HRT), artificial intelligence (AI) selects suitable input (i.e., pH, temperature, total dissolved solid (TDS), NH3-N, and NO3-N) and output (COD and TN) data pairs for training, minimizing the error between predicted and observed values. Data collected over two years from the actual A2O+AO process were utilized. The ensemble model adopted machine learning-based XGBoost for COD and TN predictions. The dynamic ensemble model outperformed the static ensemble model, with the mean absolute percentage error (MAPE) for the COD ranging from 9.5% to 15.2%, compared to the static ensemble model’s range of 11.4% to 16.9%. For the TN, the dynamic model’s errors ranged from 9.4% to 15.5%, while the static model showed lower errors in specific reactors, particularly in the anoxic and oxic stages due to their stable characteristics. These results indicate that the dynamic ensemble model is suitable for predicting water quality in WWTPs, especially as variability may increase due to external environmental factors in the future.
doi_str_mv 10.3390/w16223212
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133401106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818473181</galeid><sourcerecordid>A818473181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-36608795d9713fea4d5d34a361360f070049f2106c7e959050c1ac09aaf256a53</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqT34DwKeRFrztdldb8u2aqG6RarXJc0mNWWb1GRL6b83tSLOHGYY3pvH4wFwjdGI0hzd7zEnhBJMzkCPoJQOGWP4_N9-CQYhrFEslmdZgnpgP_eqMbIzdgXLagyFbeDiFRoLC1LdFRWceydVCLB0NphG-SNwanW7U7b7Qb8pITvn4YfwRixNa7rDAyzg-GDFxkg4sUFtlq2CL65RLSy2W--E_LwCF1q0QQ1-Zx-8P04W5fNwVj1Ny2I2lDjj3ZByjrI0T5o8xVQrwZqkoUxQjilHGqVHI5pgxGWq8iRHCZJYSJQLoUnCRUL74Ob0N8p-7VTo6rXbeRsla4opZQhHckSNTqiVaFVtrHadFzJ2o6IHZ5U28V5kOGMpxRmOhNsTQXoXgle63nqzEf5QY1Qfs6j_sqDfMmB3-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133401106</pqid></control><display><type>article</type><title>Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Guo, Yingjie ; Kim, Ji-Yeon ; Park, Jeonghyun ; Lee, Jung-Min ; Park, Sung-Gwan ; Lee, Eui-Jong ; Lee, Sangyoup ; Hwang, Moon-Hyun ; Zheng, Guili ; Ren, Xianghao ; Chae, Kyu-Jung</creator><creatorcontrib>Guo, Yingjie ; Kim, Ji-Yeon ; Park, Jeonghyun ; Lee, Jung-Min ; Park, Sung-Gwan ; Lee, Eui-Jong ; Lee, Sangyoup ; Hwang, Moon-Hyun ; Zheng, Guili ; Ren, Xianghao ; Chae, Kyu-Jung</creatorcontrib><description>The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effectively captures the variability in the influent characteristics and fluctuations within each reactor of the A2O+AO process. By employing a time-lag approach based on the hydraulic retention time (HRT), artificial intelligence (AI) selects suitable input (i.e., pH, temperature, total dissolved solid (TDS), NH3-N, and NO3-N) and output (COD and TN) data pairs for training, minimizing the error between predicted and observed values. Data collected over two years from the actual A2O+AO process were utilized. The ensemble model adopted machine learning-based XGBoost for COD and TN predictions. The dynamic ensemble model outperformed the static ensemble model, with the mean absolute percentage error (MAPE) for the COD ranging from 9.5% to 15.2%, compared to the static ensemble model’s range of 11.4% to 16.9%. For the TN, the dynamic model’s errors ranged from 9.4% to 15.5%, while the static model showed lower errors in specific reactors, particularly in the anoxic and oxic stages due to their stable characteristics. These results indicate that the dynamic ensemble model is suitable for predicting water quality in WWTPs, especially as variability may increase due to external environmental factors in the future.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16223212</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Chemical oxygen demand ; Comparative analysis ; Computer simulation ; Computer-generated environments ; Decision making ; Deep learning ; Denitrification ; Efficiency ; Effluents ; Environmental aspects ; Machine learning ; Measurement ; Nitrates ; Nitrogen ; Oxidation ; Pollutants ; Reactors ; Sensors ; Sludge ; Water quality ; Water treatment ; Water treatment plants</subject><ispartof>Water (Basel), 2024-11, Vol.16 (22), p.3212</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c186t-36608795d9713fea4d5d34a361360f070049f2106c7e959050c1ac09aaf256a53</cites><orcidid>0000-0002-5530-914X ; 0009-0005-8149-9986 ; 0000-0002-4063-8389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Yingjie</creatorcontrib><creatorcontrib>Kim, Ji-Yeon</creatorcontrib><creatorcontrib>Park, Jeonghyun</creatorcontrib><creatorcontrib>Lee, Jung-Min</creatorcontrib><creatorcontrib>Park, Sung-Gwan</creatorcontrib><creatorcontrib>Lee, Eui-Jong</creatorcontrib><creatorcontrib>Lee, Sangyoup</creatorcontrib><creatorcontrib>Hwang, Moon-Hyun</creatorcontrib><creatorcontrib>Zheng, Guili</creatorcontrib><creatorcontrib>Ren, Xianghao</creatorcontrib><creatorcontrib>Chae, Kyu-Jung</creatorcontrib><title>Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach</title><title>Water (Basel)</title><description>The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effectively captures the variability in the influent characteristics and fluctuations within each reactor of the A2O+AO process. By employing a time-lag approach based on the hydraulic retention time (HRT), artificial intelligence (AI) selects suitable input (i.e., pH, temperature, total dissolved solid (TDS), NH3-N, and NO3-N) and output (COD and TN) data pairs for training, minimizing the error between predicted and observed values. Data collected over two years from the actual A2O+AO process were utilized. The ensemble model adopted machine learning-based XGBoost for COD and TN predictions. The dynamic ensemble model outperformed the static ensemble model, with the mean absolute percentage error (MAPE) for the COD ranging from 9.5% to 15.2%, compared to the static ensemble model’s range of 11.4% to 16.9%. For the TN, the dynamic model’s errors ranged from 9.4% to 15.5%, while the static model showed lower errors in specific reactors, particularly in the anoxic and oxic stages due to their stable characteristics. These results indicate that the dynamic ensemble model is suitable for predicting water quality in WWTPs, especially as variability may increase due to external environmental factors in the future.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Chemical oxygen demand</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Denitrification</subject><subject>Efficiency</subject><subject>Effluents</subject><subject>Environmental aspects</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Pollutants</subject><subject>Reactors</subject><subject>Sensors</subject><subject>Sludge</subject><subject>Water quality</subject><subject>Water treatment</subject><subject>Water treatment plants</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUU1LAzEQDaJgqT34DwKeRFrztdldb8u2aqG6RarXJc0mNWWb1GRL6b83tSLOHGYY3pvH4wFwjdGI0hzd7zEnhBJMzkCPoJQOGWP4_N9-CQYhrFEslmdZgnpgP_eqMbIzdgXLagyFbeDiFRoLC1LdFRWceydVCLB0NphG-SNwanW7U7b7Qb8pITvn4YfwRixNa7rDAyzg-GDFxkg4sUFtlq2CL65RLSy2W--E_LwCF1q0QQ1-Zx-8P04W5fNwVj1Ny2I2lDjj3ZByjrI0T5o8xVQrwZqkoUxQjilHGqVHI5pgxGWq8iRHCZJYSJQLoUnCRUL74Ob0N8p-7VTo6rXbeRsla4opZQhHckSNTqiVaFVtrHadFzJ2o6IHZ5U28V5kOGMpxRmOhNsTQXoXgle63nqzEf5QY1Qfs6j_sqDfMmB3-w</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Guo, Yingjie</creator><creator>Kim, Ji-Yeon</creator><creator>Park, Jeonghyun</creator><creator>Lee, Jung-Min</creator><creator>Park, Sung-Gwan</creator><creator>Lee, Eui-Jong</creator><creator>Lee, Sangyoup</creator><creator>Hwang, Moon-Hyun</creator><creator>Zheng, Guili</creator><creator>Ren, Xianghao</creator><creator>Chae, Kyu-Jung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5530-914X</orcidid><orcidid>https://orcid.org/0009-0005-8149-9986</orcidid><orcidid>https://orcid.org/0000-0002-4063-8389</orcidid></search><sort><creationdate>20241101</creationdate><title>Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach</title><author>Guo, Yingjie ; Kim, Ji-Yeon ; Park, Jeonghyun ; Lee, Jung-Min ; Park, Sung-Gwan ; Lee, Eui-Jong ; Lee, Sangyoup ; Hwang, Moon-Hyun ; Zheng, Guili ; Ren, Xianghao ; Chae, Kyu-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-36608795d9713fea4d5d34a361360f070049f2106c7e959050c1ac09aaf256a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Chemical oxygen demand</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Denitrification</topic><topic>Efficiency</topic><topic>Effluents</topic><topic>Environmental aspects</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Pollutants</topic><topic>Reactors</topic><topic>Sensors</topic><topic>Sludge</topic><topic>Water quality</topic><topic>Water treatment</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yingjie</creatorcontrib><creatorcontrib>Kim, Ji-Yeon</creatorcontrib><creatorcontrib>Park, Jeonghyun</creatorcontrib><creatorcontrib>Lee, Jung-Min</creatorcontrib><creatorcontrib>Park, Sung-Gwan</creatorcontrib><creatorcontrib>Lee, Eui-Jong</creatorcontrib><creatorcontrib>Lee, Sangyoup</creatorcontrib><creatorcontrib>Hwang, Moon-Hyun</creatorcontrib><creatorcontrib>Zheng, Guili</creatorcontrib><creatorcontrib>Ren, Xianghao</creatorcontrib><creatorcontrib>Chae, Kyu-Jung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yingjie</au><au>Kim, Ji-Yeon</au><au>Park, Jeonghyun</au><au>Lee, Jung-Min</au><au>Park, Sung-Gwan</au><au>Lee, Eui-Jong</au><au>Lee, Sangyoup</au><au>Hwang, Moon-Hyun</au><au>Zheng, Guili</au><au>Ren, Xianghao</au><au>Chae, Kyu-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach</atitle><jtitle>Water (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>22</issue><spage>3212</spage><pages>3212-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effectively captures the variability in the influent characteristics and fluctuations within each reactor of the A2O+AO process. By employing a time-lag approach based on the hydraulic retention time (HRT), artificial intelligence (AI) selects suitable input (i.e., pH, temperature, total dissolved solid (TDS), NH3-N, and NO3-N) and output (COD and TN) data pairs for training, minimizing the error between predicted and observed values. Data collected over two years from the actual A2O+AO process were utilized. The ensemble model adopted machine learning-based XGBoost for COD and TN predictions. The dynamic ensemble model outperformed the static ensemble model, with the mean absolute percentage error (MAPE) for the COD ranging from 9.5% to 15.2%, compared to the static ensemble model’s range of 11.4% to 16.9%. For the TN, the dynamic model’s errors ranged from 9.4% to 15.5%, while the static model showed lower errors in specific reactors, particularly in the anoxic and oxic stages due to their stable characteristics. These results indicate that the dynamic ensemble model is suitable for predicting water quality in WWTPs, especially as variability may increase due to external environmental factors in the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16223212</doi><orcidid>https://orcid.org/0000-0002-5530-914X</orcidid><orcidid>https://orcid.org/0009-0005-8149-9986</orcidid><orcidid>https://orcid.org/0000-0002-4063-8389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2024-11, Vol.16 (22), p.3212
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_3133401106
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Algorithms
Artificial intelligence
Chemical oxygen demand
Comparative analysis
Computer simulation
Computer-generated environments
Decision making
Deep learning
Denitrification
Efficiency
Effluents
Environmental aspects
Machine learning
Measurement
Nitrates
Nitrogen
Oxidation
Pollutants
Reactors
Sensors
Sludge
Water quality
Water treatment
Water treatment plants
title Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20COD%20and%20TN%20in%20A2O+AO%20Process%20Considering%20Influent%20and%20Reactor%20Variability:%20A%20Dynamic%20Ensemble%20Model%20Approach&rft.jtitle=Water%20(Basel)&rft.au=Guo,%20Yingjie&rft.date=2024-11-01&rft.volume=16&rft.issue=22&rft.spage=3212&rft.pages=3212-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16223212&rft_dat=%3Cgale_proqu%3EA818473181%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133401106&rft_id=info:pmid/&rft_galeid=A818473181&rfr_iscdi=true