Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach
The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effecti...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-11, Vol.16 (22), p.3212 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 3212 |
container_title | Water (Basel) |
container_volume | 16 |
creator | Guo, Yingjie Kim, Ji-Yeon Park, Jeonghyun Lee, Jung-Min Park, Sung-Gwan Lee, Eui-Jong Lee, Sangyoup Hwang, Moon-Hyun Zheng, Guili Ren, Xianghao Chae, Kyu-Jung |
description | The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effectively captures the variability in the influent characteristics and fluctuations within each reactor of the A2O+AO process. By employing a time-lag approach based on the hydraulic retention time (HRT), artificial intelligence (AI) selects suitable input (i.e., pH, temperature, total dissolved solid (TDS), NH3-N, and NO3-N) and output (COD and TN) data pairs for training, minimizing the error between predicted and observed values. Data collected over two years from the actual A2O+AO process were utilized. The ensemble model adopted machine learning-based XGBoost for COD and TN predictions. The dynamic ensemble model outperformed the static ensemble model, with the mean absolute percentage error (MAPE) for the COD ranging from 9.5% to 15.2%, compared to the static ensemble model’s range of 11.4% to 16.9%. For the TN, the dynamic model’s errors ranged from 9.4% to 15.5%, while the static model showed lower errors in specific reactors, particularly in the anoxic and oxic stages due to their stable characteristics. These results indicate that the dynamic ensemble model is suitable for predicting water quality in WWTPs, especially as variability may increase due to external environmental factors in the future. |
doi_str_mv | 10.3390/w16223212 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133401106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818473181</galeid><sourcerecordid>A818473181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-36608795d9713fea4d5d34a361360f070049f2106c7e959050c1ac09aaf256a53</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqT34DwKeRFrztdldb8u2aqG6RarXJc0mNWWb1GRL6b83tSLOHGYY3pvH4wFwjdGI0hzd7zEnhBJMzkCPoJQOGWP4_N9-CQYhrFEslmdZgnpgP_eqMbIzdgXLagyFbeDiFRoLC1LdFRWceydVCLB0NphG-SNwanW7U7b7Qb8pITvn4YfwRixNa7rDAyzg-GDFxkg4sUFtlq2CL65RLSy2W--E_LwCF1q0QQ1-Zx-8P04W5fNwVj1Ny2I2lDjj3ZByjrI0T5o8xVQrwZqkoUxQjilHGqVHI5pgxGWq8iRHCZJYSJQLoUnCRUL74Ob0N8p-7VTo6rXbeRsla4opZQhHckSNTqiVaFVtrHadFzJ2o6IHZ5U28V5kOGMpxRmOhNsTQXoXgle63nqzEf5QY1Qfs6j_sqDfMmB3-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133401106</pqid></control><display><type>article</type><title>Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Guo, Yingjie ; Kim, Ji-Yeon ; Park, Jeonghyun ; Lee, Jung-Min ; Park, Sung-Gwan ; Lee, Eui-Jong ; Lee, Sangyoup ; Hwang, Moon-Hyun ; Zheng, Guili ; Ren, Xianghao ; Chae, Kyu-Jung</creator><creatorcontrib>Guo, Yingjie ; Kim, Ji-Yeon ; Park, Jeonghyun ; Lee, Jung-Min ; Park, Sung-Gwan ; Lee, Eui-Jong ; Lee, Sangyoup ; Hwang, Moon-Hyun ; Zheng, Guili ; Ren, Xianghao ; Chae, Kyu-Jung</creatorcontrib><description>The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effectively captures the variability in the influent characteristics and fluctuations within each reactor of the A2O+AO process. By employing a time-lag approach based on the hydraulic retention time (HRT), artificial intelligence (AI) selects suitable input (i.e., pH, temperature, total dissolved solid (TDS), NH3-N, and NO3-N) and output (COD and TN) data pairs for training, minimizing the error between predicted and observed values. Data collected over two years from the actual A2O+AO process were utilized. The ensemble model adopted machine learning-based XGBoost for COD and TN predictions. The dynamic ensemble model outperformed the static ensemble model, with the mean absolute percentage error (MAPE) for the COD ranging from 9.5% to 15.2%, compared to the static ensemble model’s range of 11.4% to 16.9%. For the TN, the dynamic model’s errors ranged from 9.4% to 15.5%, while the static model showed lower errors in specific reactors, particularly in the anoxic and oxic stages due to their stable characteristics. These results indicate that the dynamic ensemble model is suitable for predicting water quality in WWTPs, especially as variability may increase due to external environmental factors in the future.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16223212</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Chemical oxygen demand ; Comparative analysis ; Computer simulation ; Computer-generated environments ; Decision making ; Deep learning ; Denitrification ; Efficiency ; Effluents ; Environmental aspects ; Machine learning ; Measurement ; Nitrates ; Nitrogen ; Oxidation ; Pollutants ; Reactors ; Sensors ; Sludge ; Water quality ; Water treatment ; Water treatment plants</subject><ispartof>Water (Basel), 2024-11, Vol.16 (22), p.3212</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c186t-36608795d9713fea4d5d34a361360f070049f2106c7e959050c1ac09aaf256a53</cites><orcidid>0000-0002-5530-914X ; 0009-0005-8149-9986 ; 0000-0002-4063-8389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Yingjie</creatorcontrib><creatorcontrib>Kim, Ji-Yeon</creatorcontrib><creatorcontrib>Park, Jeonghyun</creatorcontrib><creatorcontrib>Lee, Jung-Min</creatorcontrib><creatorcontrib>Park, Sung-Gwan</creatorcontrib><creatorcontrib>Lee, Eui-Jong</creatorcontrib><creatorcontrib>Lee, Sangyoup</creatorcontrib><creatorcontrib>Hwang, Moon-Hyun</creatorcontrib><creatorcontrib>Zheng, Guili</creatorcontrib><creatorcontrib>Ren, Xianghao</creatorcontrib><creatorcontrib>Chae, Kyu-Jung</creatorcontrib><title>Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach</title><title>Water (Basel)</title><description>The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effectively captures the variability in the influent characteristics and fluctuations within each reactor of the A2O+AO process. By employing a time-lag approach based on the hydraulic retention time (HRT), artificial intelligence (AI) selects suitable input (i.e., pH, temperature, total dissolved solid (TDS), NH3-N, and NO3-N) and output (COD and TN) data pairs for training, minimizing the error between predicted and observed values. Data collected over two years from the actual A2O+AO process were utilized. The ensemble model adopted machine learning-based XGBoost for COD and TN predictions. The dynamic ensemble model outperformed the static ensemble model, with the mean absolute percentage error (MAPE) for the COD ranging from 9.5% to 15.2%, compared to the static ensemble model’s range of 11.4% to 16.9%. For the TN, the dynamic model’s errors ranged from 9.4% to 15.5%, while the static model showed lower errors in specific reactors, particularly in the anoxic and oxic stages due to their stable characteristics. These results indicate that the dynamic ensemble model is suitable for predicting water quality in WWTPs, especially as variability may increase due to external environmental factors in the future.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Chemical oxygen demand</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Denitrification</subject><subject>Efficiency</subject><subject>Effluents</subject><subject>Environmental aspects</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Pollutants</subject><subject>Reactors</subject><subject>Sensors</subject><subject>Sludge</subject><subject>Water quality</subject><subject>Water treatment</subject><subject>Water treatment plants</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUU1LAzEQDaJgqT34DwKeRFrztdldb8u2aqG6RarXJc0mNWWb1GRL6b83tSLOHGYY3pvH4wFwjdGI0hzd7zEnhBJMzkCPoJQOGWP4_N9-CQYhrFEslmdZgnpgP_eqMbIzdgXLagyFbeDiFRoLC1LdFRWceydVCLB0NphG-SNwanW7U7b7Qb8pITvn4YfwRixNa7rDAyzg-GDFxkg4sUFtlq2CL65RLSy2W--E_LwCF1q0QQ1-Zx-8P04W5fNwVj1Ny2I2lDjj3ZByjrI0T5o8xVQrwZqkoUxQjilHGqVHI5pgxGWq8iRHCZJYSJQLoUnCRUL74Ob0N8p-7VTo6rXbeRsla4opZQhHckSNTqiVaFVtrHadFzJ2o6IHZ5U28V5kOGMpxRmOhNsTQXoXgle63nqzEf5QY1Qfs6j_sqDfMmB3-w</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Guo, Yingjie</creator><creator>Kim, Ji-Yeon</creator><creator>Park, Jeonghyun</creator><creator>Lee, Jung-Min</creator><creator>Park, Sung-Gwan</creator><creator>Lee, Eui-Jong</creator><creator>Lee, Sangyoup</creator><creator>Hwang, Moon-Hyun</creator><creator>Zheng, Guili</creator><creator>Ren, Xianghao</creator><creator>Chae, Kyu-Jung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5530-914X</orcidid><orcidid>https://orcid.org/0009-0005-8149-9986</orcidid><orcidid>https://orcid.org/0000-0002-4063-8389</orcidid></search><sort><creationdate>20241101</creationdate><title>Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach</title><author>Guo, Yingjie ; Kim, Ji-Yeon ; Park, Jeonghyun ; Lee, Jung-Min ; Park, Sung-Gwan ; Lee, Eui-Jong ; Lee, Sangyoup ; Hwang, Moon-Hyun ; Zheng, Guili ; Ren, Xianghao ; Chae, Kyu-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-36608795d9713fea4d5d34a361360f070049f2106c7e959050c1ac09aaf256a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Chemical oxygen demand</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Denitrification</topic><topic>Efficiency</topic><topic>Effluents</topic><topic>Environmental aspects</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Pollutants</topic><topic>Reactors</topic><topic>Sensors</topic><topic>Sludge</topic><topic>Water quality</topic><topic>Water treatment</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yingjie</creatorcontrib><creatorcontrib>Kim, Ji-Yeon</creatorcontrib><creatorcontrib>Park, Jeonghyun</creatorcontrib><creatorcontrib>Lee, Jung-Min</creatorcontrib><creatorcontrib>Park, Sung-Gwan</creatorcontrib><creatorcontrib>Lee, Eui-Jong</creatorcontrib><creatorcontrib>Lee, Sangyoup</creatorcontrib><creatorcontrib>Hwang, Moon-Hyun</creatorcontrib><creatorcontrib>Zheng, Guili</creatorcontrib><creatorcontrib>Ren, Xianghao</creatorcontrib><creatorcontrib>Chae, Kyu-Jung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yingjie</au><au>Kim, Ji-Yeon</au><au>Park, Jeonghyun</au><au>Lee, Jung-Min</au><au>Park, Sung-Gwan</au><au>Lee, Eui-Jong</au><au>Lee, Sangyoup</au><au>Hwang, Moon-Hyun</au><au>Zheng, Guili</au><au>Ren, Xianghao</au><au>Chae, Kyu-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach</atitle><jtitle>Water (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>22</issue><spage>3212</spage><pages>3212-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The prediction of the chemical oxygen demand (COD) and total nitrogen (TN) in integrated anaerobic–anoxic–oxic (A2O) and anoxic–oxic (AO) processes (i.e., A2O+AO process) was achieved using a dynamic ensemble model that reflects the dynamics of wastewater treatment plants (WWTPs). This model effectively captures the variability in the influent characteristics and fluctuations within each reactor of the A2O+AO process. By employing a time-lag approach based on the hydraulic retention time (HRT), artificial intelligence (AI) selects suitable input (i.e., pH, temperature, total dissolved solid (TDS), NH3-N, and NO3-N) and output (COD and TN) data pairs for training, minimizing the error between predicted and observed values. Data collected over two years from the actual A2O+AO process were utilized. The ensemble model adopted machine learning-based XGBoost for COD and TN predictions. The dynamic ensemble model outperformed the static ensemble model, with the mean absolute percentage error (MAPE) for the COD ranging from 9.5% to 15.2%, compared to the static ensemble model’s range of 11.4% to 16.9%. For the TN, the dynamic model’s errors ranged from 9.4% to 15.5%, while the static model showed lower errors in specific reactors, particularly in the anoxic and oxic stages due to their stable characteristics. These results indicate that the dynamic ensemble model is suitable for predicting water quality in WWTPs, especially as variability may increase due to external environmental factors in the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16223212</doi><orcidid>https://orcid.org/0000-0002-5530-914X</orcidid><orcidid>https://orcid.org/0009-0005-8149-9986</orcidid><orcidid>https://orcid.org/0000-0002-4063-8389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2024-11, Vol.16 (22), p.3212 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_3133401106 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Algorithms Artificial intelligence Chemical oxygen demand Comparative analysis Computer simulation Computer-generated environments Decision making Deep learning Denitrification Efficiency Effluents Environmental aspects Machine learning Measurement Nitrates Nitrogen Oxidation Pollutants Reactors Sensors Sludge Water quality Water treatment Water treatment plants |
title | Predicting COD and TN in A2O+AO Process Considering Influent and Reactor Variability: A Dynamic Ensemble Model Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20COD%20and%20TN%20in%20A2O+AO%20Process%20Considering%20Influent%20and%20Reactor%20Variability:%20A%20Dynamic%20Ensemble%20Model%20Approach&rft.jtitle=Water%20(Basel)&rft.au=Guo,%20Yingjie&rft.date=2024-11-01&rft.volume=16&rft.issue=22&rft.spage=3212&rft.pages=3212-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16223212&rft_dat=%3Cgale_proqu%3EA818473181%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133401106&rft_id=info:pmid/&rft_galeid=A818473181&rfr_iscdi=true |