A Multi-Step Furnace Temperature Prediction Model for Regenerative Aluminum Smelting Based on Reversible Instance Normalization-Convolutional Neural Network-Transformer
In the regenerative aluminum smelting process, the furnace temperature is critical for the quality and energy consumption of the product. However, the process requires protective sensors, making real-time furnace temperature measurement costly, while the strong nonlinearity and distribution drift of...
Gespeichert in:
Veröffentlicht in: | Processes 2024-11, Vol.12 (11), p.2438 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!