A Multi-Step Furnace Temperature Prediction Model for Regenerative Aluminum Smelting Based on Reversible Instance Normalization-Convolutional Neural Network-Transformer

In the regenerative aluminum smelting process, the furnace temperature is critical for the quality and energy consumption of the product. However, the process requires protective sensors, making real-time furnace temperature measurement costly, while the strong nonlinearity and distribution drift of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-11, Vol.12 (11), p.2438
Hauptverfasser: Dai, Jiayang, Ling, Peirun, Shi, Haofan, Liu, Hangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!