Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU
Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model comple...
Gespeichert in:
Veröffentlicht in: | Processes 2024-11, Vol.12 (11), p.2466 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2466 |
container_title | Processes |
container_volume | 12 |
creator | Cui, Jingping Kuang, Wei Geng, Kai Bi, Aiying Bi, Fengjiao Zheng, Xiaogang Lin, Chuan |
description | Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model complexity. The XGBoost-RF approach is first applied to select the most predictive features from historical load data, weather conditions, and time-based variables. A convolutional neural network (CNN) is then employed to extract spatial features, while a gated recurrent unit (GRU) captures temporal dependencies for load forecasting. By leveraging a dual-channel structure that combines long- and short-term historical load trends, the proposed model significantly mitigates cumulative errors from recursive predictions. Experimental results demonstrate that the model achieves superior performance with an average root mean square error (RMSE) of 53.29 and mean absolute percentage error (MAPE) of 3.56% on the test set. Compared to traditional models, the prediction accuracy improves by 28.140% to 110.146%. Additionally, the model exhibits strong robustness across different climatic conditions. This research validates the efficacy of integrating XGBoost-RF feature selection with CNN-GRU for STLF, offering reliable decision support for power system management. |
doi_str_mv | 10.3390/pr12112466 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133374333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818466046</galeid><sourcerecordid>A818466046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-da8cdbf8836e02f0f0592a258cf8967cc9741d5c5294ddb1b77d5d341f93b9483</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGpvfIKAd8LWHHY3yWUt7iqUCj2Ad0s2h3ZLu6lJqvj2RiroDMwMw__PwAfALUZjSgV6OHpMMCZ5WV6AASGEZYJhdvlvvgajEHYohcCUF-UALCb6Q_bKaLjcOh-zlfEHOHNSw8p5o2SIXb-Bn13cwrf60bkQs0UFKyPjyRu4NHujYud6KHsNp_N5Vi_WN-DKyn0wo98-BOvqaTV9zmav9ct0MssUITRmWnKlW8s5LQ0iFllUCCJJwZXlomRKCZZjXaiCiFzrFreM6ULTHFtBW5FzOgR357tH795PJsRm506-Ty8biimlLE8lqcZn1UbuTdP11kUvVUptDp1yvbFd2k845okbystkuD8blHcheGObo-8O0n81GDU_nJs_zvQb3iFtMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133374333</pqid></control><display><type>article</type><title>Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Cui, Jingping ; Kuang, Wei ; Geng, Kai ; Bi, Aiying ; Bi, Fengjiao ; Zheng, Xiaogang ; Lin, Chuan</creator><creatorcontrib>Cui, Jingping ; Kuang, Wei ; Geng, Kai ; Bi, Aiying ; Bi, Fengjiao ; Zheng, Xiaogang ; Lin, Chuan</creatorcontrib><description>Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model complexity. The XGBoost-RF approach is first applied to select the most predictive features from historical load data, weather conditions, and time-based variables. A convolutional neural network (CNN) is then employed to extract spatial features, while a gated recurrent unit (GRU) captures temporal dependencies for load forecasting. By leveraging a dual-channel structure that combines long- and short-term historical load trends, the proposed model significantly mitigates cumulative errors from recursive predictions. Experimental results demonstrate that the model achieves superior performance with an average root mean square error (RMSE) of 53.29 and mean absolute percentage error (MAPE) of 3.56% on the test set. Compared to traditional models, the prediction accuracy improves by 28.140% to 110.146%. Additionally, the model exhibits strong robustness across different climatic conditions. This research validates the efficacy of integrating XGBoost-RF feature selection with CNN-GRU for STLF, offering reliable decision support for power system management.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12112466</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Climatic conditions ; Decision support systems ; Deep learning ; Electric power systems ; Electricity distribution ; Energy consumption ; Feature selection ; Forecasting ; Historical structures ; Methods ; Neural networks ; Optimization techniques ; Predictions ; Root-mean-square errors ; Time series ; Trends ; Weather</subject><ispartof>Processes, 2024-11, Vol.12 (11), p.2466</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c223t-da8cdbf8836e02f0f0592a258cf8967cc9741d5c5294ddb1b77d5d341f93b9483</cites><orcidid>0000-0001-6400-7322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cui, Jingping</creatorcontrib><creatorcontrib>Kuang, Wei</creatorcontrib><creatorcontrib>Geng, Kai</creatorcontrib><creatorcontrib>Bi, Aiying</creatorcontrib><creatorcontrib>Bi, Fengjiao</creatorcontrib><creatorcontrib>Zheng, Xiaogang</creatorcontrib><creatorcontrib>Lin, Chuan</creatorcontrib><title>Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU</title><title>Processes</title><description>Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model complexity. The XGBoost-RF approach is first applied to select the most predictive features from historical load data, weather conditions, and time-based variables. A convolutional neural network (CNN) is then employed to extract spatial features, while a gated recurrent unit (GRU) captures temporal dependencies for load forecasting. By leveraging a dual-channel structure that combines long- and short-term historical load trends, the proposed model significantly mitigates cumulative errors from recursive predictions. Experimental results demonstrate that the model achieves superior performance with an average root mean square error (RMSE) of 53.29 and mean absolute percentage error (MAPE) of 3.56% on the test set. Compared to traditional models, the prediction accuracy improves by 28.140% to 110.146%. Additionally, the model exhibits strong robustness across different climatic conditions. This research validates the efficacy of integrating XGBoost-RF feature selection with CNN-GRU for STLF, offering reliable decision support for power system management.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Climatic conditions</subject><subject>Decision support systems</subject><subject>Deep learning</subject><subject>Electric power systems</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Feature selection</subject><subject>Forecasting</subject><subject>Historical structures</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Predictions</subject><subject>Root-mean-square errors</subject><subject>Time series</subject><subject>Trends</subject><subject>Weather</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkNtKAzEQhoMoWGpvfIKAd8LWHHY3yWUt7iqUCj2Ad0s2h3ZLu6lJqvj2RiroDMwMw__PwAfALUZjSgV6OHpMMCZ5WV6AASGEZYJhdvlvvgajEHYohcCUF-UALCb6Q_bKaLjcOh-zlfEHOHNSw8p5o2SIXb-Bn13cwrf60bkQs0UFKyPjyRu4NHujYud6KHsNp_N5Vi_WN-DKyn0wo98-BOvqaTV9zmav9ct0MssUITRmWnKlW8s5LQ0iFllUCCJJwZXlomRKCZZjXaiCiFzrFreM6ULTHFtBW5FzOgR357tH795PJsRm506-Ty8biimlLE8lqcZn1UbuTdP11kUvVUptDp1yvbFd2k845okbystkuD8blHcheGObo-8O0n81GDU_nJs_zvQb3iFtMA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Cui, Jingping</creator><creator>Kuang, Wei</creator><creator>Geng, Kai</creator><creator>Bi, Aiying</creator><creator>Bi, Fengjiao</creator><creator>Zheng, Xiaogang</creator><creator>Lin, Chuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6400-7322</orcidid></search><sort><creationdate>20241101</creationdate><title>Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU</title><author>Cui, Jingping ; Kuang, Wei ; Geng, Kai ; Bi, Aiying ; Bi, Fengjiao ; Zheng, Xiaogang ; Lin, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-da8cdbf8836e02f0f0592a258cf8967cc9741d5c5294ddb1b77d5d341f93b9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Climatic conditions</topic><topic>Decision support systems</topic><topic>Deep learning</topic><topic>Electric power systems</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Feature selection</topic><topic>Forecasting</topic><topic>Historical structures</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Predictions</topic><topic>Root-mean-square errors</topic><topic>Time series</topic><topic>Trends</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Jingping</creatorcontrib><creatorcontrib>Kuang, Wei</creatorcontrib><creatorcontrib>Geng, Kai</creatorcontrib><creatorcontrib>Bi, Aiying</creatorcontrib><creatorcontrib>Bi, Fengjiao</creatorcontrib><creatorcontrib>Zheng, Xiaogang</creatorcontrib><creatorcontrib>Lin, Chuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Jingping</au><au>Kuang, Wei</au><au>Geng, Kai</au><au>Bi, Aiying</au><au>Bi, Fengjiao</au><au>Zheng, Xiaogang</au><au>Lin, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU</atitle><jtitle>Processes</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>11</issue><spage>2466</spage><pages>2466-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model complexity. The XGBoost-RF approach is first applied to select the most predictive features from historical load data, weather conditions, and time-based variables. A convolutional neural network (CNN) is then employed to extract spatial features, while a gated recurrent unit (GRU) captures temporal dependencies for load forecasting. By leveraging a dual-channel structure that combines long- and short-term historical load trends, the proposed model significantly mitigates cumulative errors from recursive predictions. Experimental results demonstrate that the model achieves superior performance with an average root mean square error (RMSE) of 53.29 and mean absolute percentage error (MAPE) of 3.56% on the test set. Compared to traditional models, the prediction accuracy improves by 28.140% to 110.146%. Additionally, the model exhibits strong robustness across different climatic conditions. This research validates the efficacy of integrating XGBoost-RF feature selection with CNN-GRU for STLF, offering reliable decision support for power system management.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12112466</doi><orcidid>https://orcid.org/0000-0001-6400-7322</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-11, Vol.12 (11), p.2466 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_3133374333 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Algorithms Artificial neural networks Climatic conditions Decision support systems Deep learning Electric power systems Electricity distribution Energy consumption Feature selection Forecasting Historical structures Methods Neural networks Optimization techniques Predictions Root-mean-square errors Time series Trends Weather |
title | Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Short-Term%20Load%20Forecasting%20with%20XGBoost-RF%20Feature%20Selection%20and%20CNN-GRU&rft.jtitle=Processes&rft.au=Cui,%20Jingping&rft.date=2024-11-01&rft.volume=12&rft.issue=11&rft.spage=2466&rft.pages=2466-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12112466&rft_dat=%3Cgale_proqu%3EA818466046%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133374333&rft_id=info:pmid/&rft_galeid=A818466046&rfr_iscdi=true |