Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU

Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-11, Vol.12 (11), p.2466
Hauptverfasser: Cui, Jingping, Kuang, Wei, Geng, Kai, Bi, Aiying, Bi, Fengjiao, Zheng, Xiaogang, Lin, Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2466
container_title Processes
container_volume 12
creator Cui, Jingping
Kuang, Wei
Geng, Kai
Bi, Aiying
Bi, Fengjiao
Zheng, Xiaogang
Lin, Chuan
description Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model complexity. The XGBoost-RF approach is first applied to select the most predictive features from historical load data, weather conditions, and time-based variables. A convolutional neural network (CNN) is then employed to extract spatial features, while a gated recurrent unit (GRU) captures temporal dependencies for load forecasting. By leveraging a dual-channel structure that combines long- and short-term historical load trends, the proposed model significantly mitigates cumulative errors from recursive predictions. Experimental results demonstrate that the model achieves superior performance with an average root mean square error (RMSE) of 53.29 and mean absolute percentage error (MAPE) of 3.56% on the test set. Compared to traditional models, the prediction accuracy improves by 28.140% to 110.146%. Additionally, the model exhibits strong robustness across different climatic conditions. This research validates the efficacy of integrating XGBoost-RF feature selection with CNN-GRU for STLF, offering reliable decision support for power system management.
doi_str_mv 10.3390/pr12112466
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133374333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818466046</galeid><sourcerecordid>A818466046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-da8cdbf8836e02f0f0592a258cf8967cc9741d5c5294ddb1b77d5d341f93b9483</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGpvfIKAd8LWHHY3yWUt7iqUCj2Ad0s2h3ZLu6lJqvj2RiroDMwMw__PwAfALUZjSgV6OHpMMCZ5WV6AASGEZYJhdvlvvgajEHYohcCUF-UALCb6Q_bKaLjcOh-zlfEHOHNSw8p5o2SIXb-Bn13cwrf60bkQs0UFKyPjyRu4NHujYud6KHsNp_N5Vi_WN-DKyn0wo98-BOvqaTV9zmav9ct0MssUITRmWnKlW8s5LQ0iFllUCCJJwZXlomRKCZZjXaiCiFzrFreM6ULTHFtBW5FzOgR357tH795PJsRm506-Ty8biimlLE8lqcZn1UbuTdP11kUvVUptDp1yvbFd2k845okbystkuD8blHcheGObo-8O0n81GDU_nJs_zvQb3iFtMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133374333</pqid></control><display><type>article</type><title>Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Cui, Jingping ; Kuang, Wei ; Geng, Kai ; Bi, Aiying ; Bi, Fengjiao ; Zheng, Xiaogang ; Lin, Chuan</creator><creatorcontrib>Cui, Jingping ; Kuang, Wei ; Geng, Kai ; Bi, Aiying ; Bi, Fengjiao ; Zheng, Xiaogang ; Lin, Chuan</creatorcontrib><description>Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model complexity. The XGBoost-RF approach is first applied to select the most predictive features from historical load data, weather conditions, and time-based variables. A convolutional neural network (CNN) is then employed to extract spatial features, while a gated recurrent unit (GRU) captures temporal dependencies for load forecasting. By leveraging a dual-channel structure that combines long- and short-term historical load trends, the proposed model significantly mitigates cumulative errors from recursive predictions. Experimental results demonstrate that the model achieves superior performance with an average root mean square error (RMSE) of 53.29 and mean absolute percentage error (MAPE) of 3.56% on the test set. Compared to traditional models, the prediction accuracy improves by 28.140% to 110.146%. Additionally, the model exhibits strong robustness across different climatic conditions. This research validates the efficacy of integrating XGBoost-RF feature selection with CNN-GRU for STLF, offering reliable decision support for power system management.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12112466</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Climatic conditions ; Decision support systems ; Deep learning ; Electric power systems ; Electricity distribution ; Energy consumption ; Feature selection ; Forecasting ; Historical structures ; Methods ; Neural networks ; Optimization techniques ; Predictions ; Root-mean-square errors ; Time series ; Trends ; Weather</subject><ispartof>Processes, 2024-11, Vol.12 (11), p.2466</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c223t-da8cdbf8836e02f0f0592a258cf8967cc9741d5c5294ddb1b77d5d341f93b9483</cites><orcidid>0000-0001-6400-7322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cui, Jingping</creatorcontrib><creatorcontrib>Kuang, Wei</creatorcontrib><creatorcontrib>Geng, Kai</creatorcontrib><creatorcontrib>Bi, Aiying</creatorcontrib><creatorcontrib>Bi, Fengjiao</creatorcontrib><creatorcontrib>Zheng, Xiaogang</creatorcontrib><creatorcontrib>Lin, Chuan</creatorcontrib><title>Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU</title><title>Processes</title><description>Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model complexity. The XGBoost-RF approach is first applied to select the most predictive features from historical load data, weather conditions, and time-based variables. A convolutional neural network (CNN) is then employed to extract spatial features, while a gated recurrent unit (GRU) captures temporal dependencies for load forecasting. By leveraging a dual-channel structure that combines long- and short-term historical load trends, the proposed model significantly mitigates cumulative errors from recursive predictions. Experimental results demonstrate that the model achieves superior performance with an average root mean square error (RMSE) of 53.29 and mean absolute percentage error (MAPE) of 3.56% on the test set. Compared to traditional models, the prediction accuracy improves by 28.140% to 110.146%. Additionally, the model exhibits strong robustness across different climatic conditions. This research validates the efficacy of integrating XGBoost-RF feature selection with CNN-GRU for STLF, offering reliable decision support for power system management.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Climatic conditions</subject><subject>Decision support systems</subject><subject>Deep learning</subject><subject>Electric power systems</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Feature selection</subject><subject>Forecasting</subject><subject>Historical structures</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Predictions</subject><subject>Root-mean-square errors</subject><subject>Time series</subject><subject>Trends</subject><subject>Weather</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkNtKAzEQhoMoWGpvfIKAd8LWHHY3yWUt7iqUCj2Ad0s2h3ZLu6lJqvj2RiroDMwMw__PwAfALUZjSgV6OHpMMCZ5WV6AASGEZYJhdvlvvgajEHYohcCUF-UALCb6Q_bKaLjcOh-zlfEHOHNSw8p5o2SIXb-Bn13cwrf60bkQs0UFKyPjyRu4NHujYud6KHsNp_N5Vi_WN-DKyn0wo98-BOvqaTV9zmav9ct0MssUITRmWnKlW8s5LQ0iFllUCCJJwZXlomRKCZZjXaiCiFzrFreM6ULTHFtBW5FzOgR357tH795PJsRm506-Ty8biimlLE8lqcZn1UbuTdP11kUvVUptDp1yvbFd2k845okbystkuD8blHcheGObo-8O0n81GDU_nJs_zvQb3iFtMA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Cui, Jingping</creator><creator>Kuang, Wei</creator><creator>Geng, Kai</creator><creator>Bi, Aiying</creator><creator>Bi, Fengjiao</creator><creator>Zheng, Xiaogang</creator><creator>Lin, Chuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6400-7322</orcidid></search><sort><creationdate>20241101</creationdate><title>Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU</title><author>Cui, Jingping ; Kuang, Wei ; Geng, Kai ; Bi, Aiying ; Bi, Fengjiao ; Zheng, Xiaogang ; Lin, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-da8cdbf8836e02f0f0592a258cf8967cc9741d5c5294ddb1b77d5d341f93b9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Climatic conditions</topic><topic>Decision support systems</topic><topic>Deep learning</topic><topic>Electric power systems</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Feature selection</topic><topic>Forecasting</topic><topic>Historical structures</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Predictions</topic><topic>Root-mean-square errors</topic><topic>Time series</topic><topic>Trends</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Jingping</creatorcontrib><creatorcontrib>Kuang, Wei</creatorcontrib><creatorcontrib>Geng, Kai</creatorcontrib><creatorcontrib>Bi, Aiying</creatorcontrib><creatorcontrib>Bi, Fengjiao</creatorcontrib><creatorcontrib>Zheng, Xiaogang</creatorcontrib><creatorcontrib>Lin, Chuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Jingping</au><au>Kuang, Wei</au><au>Geng, Kai</au><au>Bi, Aiying</au><au>Bi, Fengjiao</au><au>Zheng, Xiaogang</au><au>Lin, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU</atitle><jtitle>Processes</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>11</issue><spage>2466</spage><pages>2466-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Accurate and efficient short-term load forecasting (STLF) is essential for optimizing power system operations. This study proposes a novel hybrid forecasting model that integrates XGBoost-RF feature selection with a CNN-GRU neural network to enhance prediction performance while reducing model complexity. The XGBoost-RF approach is first applied to select the most predictive features from historical load data, weather conditions, and time-based variables. A convolutional neural network (CNN) is then employed to extract spatial features, while a gated recurrent unit (GRU) captures temporal dependencies for load forecasting. By leveraging a dual-channel structure that combines long- and short-term historical load trends, the proposed model significantly mitigates cumulative errors from recursive predictions. Experimental results demonstrate that the model achieves superior performance with an average root mean square error (RMSE) of 53.29 and mean absolute percentage error (MAPE) of 3.56% on the test set. Compared to traditional models, the prediction accuracy improves by 28.140% to 110.146%. Additionally, the model exhibits strong robustness across different climatic conditions. This research validates the efficacy of integrating XGBoost-RF feature selection with CNN-GRU for STLF, offering reliable decision support for power system management.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12112466</doi><orcidid>https://orcid.org/0000-0001-6400-7322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2024-11, Vol.12 (11), p.2466
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_3133374333
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Algorithms
Artificial neural networks
Climatic conditions
Decision support systems
Deep learning
Electric power systems
Electricity distribution
Energy consumption
Feature selection
Forecasting
Historical structures
Methods
Neural networks
Optimization techniques
Predictions
Root-mean-square errors
Time series
Trends
Weather
title Advanced Short-Term Load Forecasting with XGBoost-RF Feature Selection and CNN-GRU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Short-Term%20Load%20Forecasting%20with%20XGBoost-RF%20Feature%20Selection%20and%20CNN-GRU&rft.jtitle=Processes&rft.au=Cui,%20Jingping&rft.date=2024-11-01&rft.volume=12&rft.issue=11&rft.spage=2466&rft.pages=2466-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12112466&rft_dat=%3Cgale_proqu%3EA818466046%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133374333&rft_id=info:pmid/&rft_galeid=A818466046&rfr_iscdi=true