VMC‐UNet: A Vision Mamba‐CNN U‐Net for Tumor Segmentation in Breast Ultrasound Image

ABSTRACT Breast cancer remains one of the most significant health threats to women, making precise segmentation of target tumors critical for early clinical intervention and postoperative monitoring. While numerous convolutional neural networks (CNNs) and vision transformers have been developed to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2024-11, Vol.34 (6), p.n/a
Hauptverfasser: Wang, Dongyue, Zhao, Weiyu, Cui, Kaixuan, Zhu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title International journal of imaging systems and technology
container_volume 34
creator Wang, Dongyue
Zhao, Weiyu
Cui, Kaixuan
Zhu, Yi
description ABSTRACT Breast cancer remains one of the most significant health threats to women, making precise segmentation of target tumors critical for early clinical intervention and postoperative monitoring. While numerous convolutional neural networks (CNNs) and vision transformers have been developed to segment breast tumors from ultrasound images, both architectures encounter difficulties in effectively modeling long‐range dependencies, which are essential for accurate segmentation. Drawing inspiration from the Mamba architecture, we introduce the Vision Mamba‐CNN U‐Net (VMC‐UNet) for breast tumor segmentation. This innovative hybrid framework merges the long‐range dependency modeling capabilities of Mamba with the detailed local representation power of CNNs. A key feature of our approach is the implementation of a residual connection method within the U‐Net architecture, utilizing the visual state space (VSS) module to extract long‐range dependency features from convolutional feature maps effectively. Additionally, to better integrate texture and structural features, we have designed a bilinear multi‐scale attention module (BMSA), which significantly enhances the network's ability to capture and utilize intricate feature details across multiple scales. Extensive experiments conducted on three public datasets demonstrate that the proposed VMC‐UNet surpasses other state‐of‐the‐art methods in breast tumor segmentation, achieving Dice coefficients of 81.52% for BUSI, 88.00% for BUS, and 88.96% for STU. The source code is accessible at https://github.com/windywindyw/VMC‐UNet.
doi_str_mv 10.1002/ima.23222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133268152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133268152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1872-874f2196580c9ee536c4062c5e331b4acf78eaef19734c6a64ee1feeb02e18123</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EEqUw8AaWmBjS-uz8cdhKVKBSWwaaDiyWGy5VqiYpdiLUjUfgGXkSHMLK8n26u9_dSR8h18BGwBgfF6UeccE5PyEDYLH0OjklAybj2Iv9IDonF9buGAMIWDAgr-tF8v35lS6xuaMTui5sUVd0ocuNdu1kuaSpczeleW3oqi2dvuC2xKrRTYcWFb03qG1D031jtK3b6o3OSr3FS3KW673Fqz8fkvRhukqevPnz4yyZzL0MZMQ9Gfk5hzgMJMtixECEmc9CngUoBGx8neWRRI05xJHws1CHPiLkiBvGESRwMSQ3_d2Dqd9btI3a1a2p3EslQAgeSgg66ranMlNbazBXB-PCMkcFTHXRKVep3-gcO-7Zj2KPx_9BNVtM-o0fGmJwiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133268152</pqid></control><display><type>article</type><title>VMC‐UNet: A Vision Mamba‐CNN U‐Net for Tumor Segmentation in Breast Ultrasound Image</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Dongyue ; Zhao, Weiyu ; Cui, Kaixuan ; Zhu, Yi</creator><creatorcontrib>Wang, Dongyue ; Zhao, Weiyu ; Cui, Kaixuan ; Zhu, Yi</creatorcontrib><description>ABSTRACT Breast cancer remains one of the most significant health threats to women, making precise segmentation of target tumors critical for early clinical intervention and postoperative monitoring. While numerous convolutional neural networks (CNNs) and vision transformers have been developed to segment breast tumors from ultrasound images, both architectures encounter difficulties in effectively modeling long‐range dependencies, which are essential for accurate segmentation. Drawing inspiration from the Mamba architecture, we introduce the Vision Mamba‐CNN U‐Net (VMC‐UNet) for breast tumor segmentation. This innovative hybrid framework merges the long‐range dependency modeling capabilities of Mamba with the detailed local representation power of CNNs. A key feature of our approach is the implementation of a residual connection method within the U‐Net architecture, utilizing the visual state space (VSS) module to extract long‐range dependency features from convolutional feature maps effectively. Additionally, to better integrate texture and structural features, we have designed a bilinear multi‐scale attention module (BMSA), which significantly enhances the network's ability to capture and utilize intricate feature details across multiple scales. Extensive experiments conducted on three public datasets demonstrate that the proposed VMC‐UNet surpasses other state‐of‐the‐art methods in breast tumor segmentation, achieving Dice coefficients of 81.52% for BUSI, 88.00% for BUS, and 88.96% for STU. The source code is accessible at https://github.com/windywindyw/VMC‐UNet.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.23222</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial neural networks ; attention ; breast segmentation ; Feature maps ; Image segmentation ; Modelling ; Modules ; Source code ; Tumors ; Ultrasonic imaging ; ultrasound image ; Vision ; vision mamba</subject><ispartof>International journal of imaging systems and technology, 2024-11, Vol.34 (6), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1872-874f2196580c9ee536c4062c5e331b4acf78eaef19734c6a64ee1feeb02e18123</cites><orcidid>0009-0008-5184-7937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.23222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.23222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wang, Dongyue</creatorcontrib><creatorcontrib>Zhao, Weiyu</creatorcontrib><creatorcontrib>Cui, Kaixuan</creatorcontrib><creatorcontrib>Zhu, Yi</creatorcontrib><title>VMC‐UNet: A Vision Mamba‐CNN U‐Net for Tumor Segmentation in Breast Ultrasound Image</title><title>International journal of imaging systems and technology</title><description>ABSTRACT Breast cancer remains one of the most significant health threats to women, making precise segmentation of target tumors critical for early clinical intervention and postoperative monitoring. While numerous convolutional neural networks (CNNs) and vision transformers have been developed to segment breast tumors from ultrasound images, both architectures encounter difficulties in effectively modeling long‐range dependencies, which are essential for accurate segmentation. Drawing inspiration from the Mamba architecture, we introduce the Vision Mamba‐CNN U‐Net (VMC‐UNet) for breast tumor segmentation. This innovative hybrid framework merges the long‐range dependency modeling capabilities of Mamba with the detailed local representation power of CNNs. A key feature of our approach is the implementation of a residual connection method within the U‐Net architecture, utilizing the visual state space (VSS) module to extract long‐range dependency features from convolutional feature maps effectively. Additionally, to better integrate texture and structural features, we have designed a bilinear multi‐scale attention module (BMSA), which significantly enhances the network's ability to capture and utilize intricate feature details across multiple scales. Extensive experiments conducted on three public datasets demonstrate that the proposed VMC‐UNet surpasses other state‐of‐the‐art methods in breast tumor segmentation, achieving Dice coefficients of 81.52% for BUSI, 88.00% for BUS, and 88.96% for STU. The source code is accessible at https://github.com/windywindyw/VMC‐UNet.</description><subject>Artificial neural networks</subject><subject>attention</subject><subject>breast segmentation</subject><subject>Feature maps</subject><subject>Image segmentation</subject><subject>Modelling</subject><subject>Modules</subject><subject>Source code</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>ultrasound image</subject><subject>Vision</subject><subject>vision mamba</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxi0EEqUw8AaWmBjS-uz8cdhKVKBSWwaaDiyWGy5VqiYpdiLUjUfgGXkSHMLK8n26u9_dSR8h18BGwBgfF6UeccE5PyEDYLH0OjklAybj2Iv9IDonF9buGAMIWDAgr-tF8v35lS6xuaMTui5sUVd0ocuNdu1kuaSpczeleW3oqi2dvuC2xKrRTYcWFb03qG1D031jtK3b6o3OSr3FS3KW673Fqz8fkvRhukqevPnz4yyZzL0MZMQ9Gfk5hzgMJMtixECEmc9CngUoBGx8neWRRI05xJHws1CHPiLkiBvGESRwMSQ3_d2Dqd9btI3a1a2p3EslQAgeSgg66ranMlNbazBXB-PCMkcFTHXRKVep3-gcO-7Zj2KPx_9BNVtM-o0fGmJwiA</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wang, Dongyue</creator><creator>Zhao, Weiyu</creator><creator>Cui, Kaixuan</creator><creator>Zhu, Yi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-5184-7937</orcidid></search><sort><creationdate>202411</creationdate><title>VMC‐UNet: A Vision Mamba‐CNN U‐Net for Tumor Segmentation in Breast Ultrasound Image</title><author>Wang, Dongyue ; Zhao, Weiyu ; Cui, Kaixuan ; Zhu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1872-874f2196580c9ee536c4062c5e331b4acf78eaef19734c6a64ee1feeb02e18123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>attention</topic><topic>breast segmentation</topic><topic>Feature maps</topic><topic>Image segmentation</topic><topic>Modelling</topic><topic>Modules</topic><topic>Source code</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>ultrasound image</topic><topic>Vision</topic><topic>vision mamba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dongyue</creatorcontrib><creatorcontrib>Zhao, Weiyu</creatorcontrib><creatorcontrib>Cui, Kaixuan</creatorcontrib><creatorcontrib>Zhu, Yi</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dongyue</au><au>Zhao, Weiyu</au><au>Cui, Kaixuan</au><au>Zhu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VMC‐UNet: A Vision Mamba‐CNN U‐Net for Tumor Segmentation in Breast Ultrasound Image</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2024-11</date><risdate>2024</risdate><volume>34</volume><issue>6</issue><epage>n/a</epage><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>ABSTRACT Breast cancer remains one of the most significant health threats to women, making precise segmentation of target tumors critical for early clinical intervention and postoperative monitoring. While numerous convolutional neural networks (CNNs) and vision transformers have been developed to segment breast tumors from ultrasound images, both architectures encounter difficulties in effectively modeling long‐range dependencies, which are essential for accurate segmentation. Drawing inspiration from the Mamba architecture, we introduce the Vision Mamba‐CNN U‐Net (VMC‐UNet) for breast tumor segmentation. This innovative hybrid framework merges the long‐range dependency modeling capabilities of Mamba with the detailed local representation power of CNNs. A key feature of our approach is the implementation of a residual connection method within the U‐Net architecture, utilizing the visual state space (VSS) module to extract long‐range dependency features from convolutional feature maps effectively. Additionally, to better integrate texture and structural features, we have designed a bilinear multi‐scale attention module (BMSA), which significantly enhances the network's ability to capture and utilize intricate feature details across multiple scales. Extensive experiments conducted on three public datasets demonstrate that the proposed VMC‐UNet surpasses other state‐of‐the‐art methods in breast tumor segmentation, achieving Dice coefficients of 81.52% for BUSI, 88.00% for BUS, and 88.96% for STU. The source code is accessible at https://github.com/windywindyw/VMC‐UNet.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.23222</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0008-5184-7937</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2024-11, Vol.34 (6), p.n/a
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_3133268152
source Wiley Online Library Journals Frontfile Complete
subjects Artificial neural networks
attention
breast segmentation
Feature maps
Image segmentation
Modelling
Modules
Source code
Tumors
Ultrasonic imaging
ultrasound image
Vision
vision mamba
title VMC‐UNet: A Vision Mamba‐CNN U‐Net for Tumor Segmentation in Breast Ultrasound Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VMC%E2%80%90UNet:%20A%20Vision%20Mamba%E2%80%90CNN%20U%E2%80%90Net%20for%20Tumor%20Segmentation%20in%20Breast%20Ultrasound%20Image&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Wang,%20Dongyue&rft.date=2024-11&rft.volume=34&rft.issue=6&rft.epage=n/a&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.23222&rft_dat=%3Cproquest_cross%3E3133268152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133268152&rft_id=info:pmid/&rfr_iscdi=true