Bppfl: a blockchain-based framework for privacy-preserving federated learning
Federated Learning (FL) offers a collaborative approach to training machine learning models while preserving data privacy. However, FL faces significant privacy and security challenges, such as identity disclosure and model inference attacks. To this end, we propose a novel Blockchain-Based Framewor...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2025-04, Vol.28 (2), p.126, Article 126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 126 |
container_title | Cluster computing |
container_volume | 28 |
creator | Asad, Muhammad Otoum, Safa |
description | Federated Learning (FL) offers a collaborative approach to training machine learning models while preserving data privacy. However, FL faces significant privacy and security challenges, such as identity disclosure and model inference attacks. To this end, we propose a novel Blockchain-Based Framework for Privacy-Preserving Federated Learning (BPPFL), which integrates threshold signature authentication and threshold Paillier encryption with blockchain technology. The BPPFL framework secures participant authentication and protects against internal and external threats, while the blockchain provides an immutable ledger for recording transactions and model updates, ensuring transparency and security. Experimental results show that our framework significantly reduces computation and communication overhead compared to existing methods while maintaining high model accuracy and robust privacy guarantees. Our framework enhances the security and trustworthiness of FL applications, making it suitable for domains like healthcare, finance, and the IoT. |
doi_str_mv | 10.1007/s10586-024-04834-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133093240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133093240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-6d693d6b5c1d090c967399d35cc2cec0a0bf85f4a940fba639758b372e05cd9e3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hxw6qRpuMHEP2mIC5yjNE3Gtq4tSTe0b0-gSNw42bLfe5Z_hJwzuGQA8ioyEGVBIecUeImc8gMyYUIilYLjYeoxrWUp5DE5iXEFAErmakKeb_veN9eZyaqms2v7bpYtrUx0deaD2bjPLqwz34WsD8udsXvaBxdd2C3bReZd7YIZkrRxJrRpdEqOvGmiO_utU_J2f_c6e6Tzl4en2c2c2hxgoEVdKKyLSlhWgwKrColK1Sisza2zYKDypfDcKA6-MgUqKcoKZe5A2Fo5nJKLMbcP3cfWxUGvum1o00mNDBEU5hySKh9VNnQxBud1emJjwl4z0N_Y9IhNJ2z6B5vmyYSjKSZxu3DhL_of1xftnnBa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133093240</pqid></control><display><type>article</type><title>Bppfl: a blockchain-based framework for privacy-preserving federated learning</title><source>Springer Nature - Complete Springer Journals</source><creator>Asad, Muhammad ; Otoum, Safa</creator><creatorcontrib>Asad, Muhammad ; Otoum, Safa</creatorcontrib><description>Federated Learning (FL) offers a collaborative approach to training machine learning models while preserving data privacy. However, FL faces significant privacy and security challenges, such as identity disclosure and model inference attacks. To this end, we propose a novel Blockchain-Based Framework for Privacy-Preserving Federated Learning (BPPFL), which integrates threshold signature authentication and threshold Paillier encryption with blockchain technology. The BPPFL framework secures participant authentication and protects against internal and external threats, while the blockchain provides an immutable ledger for recording transactions and model updates, ensuring transparency and security. Experimental results show that our framework significantly reduces computation and communication overhead compared to existing methods while maintaining high model accuracy and robust privacy guarantees. Our framework enhances the security and trustworthiness of FL applications, making it suitable for domains like healthcare, finance, and the IoT.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04834-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Authentication ; Automation ; Blockchain ; Communication ; Computer Communication Networks ; Computer Science ; Confidentiality ; Efficiency ; Federated learning ; Internet of Things ; Machine learning ; Operating Systems ; Privacy ; Processor Architectures ; Security</subject><ispartof>Cluster computing, 2025-04, Vol.28 (2), p.126, Article 126</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-6d693d6b5c1d090c967399d35cc2cec0a0bf85f4a940fba639758b372e05cd9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-024-04834-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10586-024-04834-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Asad, Muhammad</creatorcontrib><creatorcontrib>Otoum, Safa</creatorcontrib><title>Bppfl: a blockchain-based framework for privacy-preserving federated learning</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Federated Learning (FL) offers a collaborative approach to training machine learning models while preserving data privacy. However, FL faces significant privacy and security challenges, such as identity disclosure and model inference attacks. To this end, we propose a novel Blockchain-Based Framework for Privacy-Preserving Federated Learning (BPPFL), which integrates threshold signature authentication and threshold Paillier encryption with blockchain technology. The BPPFL framework secures participant authentication and protects against internal and external threats, while the blockchain provides an immutable ledger for recording transactions and model updates, ensuring transparency and security. Experimental results show that our framework significantly reduces computation and communication overhead compared to existing methods while maintaining high model accuracy and robust privacy guarantees. Our framework enhances the security and trustworthiness of FL applications, making it suitable for domains like healthcare, finance, and the IoT.</description><subject>Artificial intelligence</subject><subject>Authentication</subject><subject>Automation</subject><subject>Blockchain</subject><subject>Communication</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Confidentiality</subject><subject>Efficiency</subject><subject>Federated learning</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Operating Systems</subject><subject>Privacy</subject><subject>Processor Architectures</subject><subject>Security</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hxw6qRpuMHEP2mIC5yjNE3Gtq4tSTe0b0-gSNw42bLfe5Z_hJwzuGQA8ioyEGVBIecUeImc8gMyYUIilYLjYeoxrWUp5DE5iXEFAErmakKeb_veN9eZyaqms2v7bpYtrUx0deaD2bjPLqwz34WsD8udsXvaBxdd2C3bReZd7YIZkrRxJrRpdEqOvGmiO_utU_J2f_c6e6Tzl4en2c2c2hxgoEVdKKyLSlhWgwKrColK1Sisza2zYKDypfDcKA6-MgUqKcoKZe5A2Fo5nJKLMbcP3cfWxUGvum1o00mNDBEU5hySKh9VNnQxBud1emJjwl4z0N_Y9IhNJ2z6B5vmyYSjKSZxu3DhL_of1xftnnBa</recordid><startdate>20250401</startdate><enddate>20250401</enddate><creator>Asad, Muhammad</creator><creator>Otoum, Safa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20250401</creationdate><title>Bppfl: a blockchain-based framework for privacy-preserving federated learning</title><author>Asad, Muhammad ; Otoum, Safa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-6d693d6b5c1d090c967399d35cc2cec0a0bf85f4a940fba639758b372e05cd9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial intelligence</topic><topic>Authentication</topic><topic>Automation</topic><topic>Blockchain</topic><topic>Communication</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Confidentiality</topic><topic>Efficiency</topic><topic>Federated learning</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Operating Systems</topic><topic>Privacy</topic><topic>Processor Architectures</topic><topic>Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asad, Muhammad</creatorcontrib><creatorcontrib>Otoum, Safa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asad, Muhammad</au><au>Otoum, Safa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bppfl: a blockchain-based framework for privacy-preserving federated learning</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2025-04-01</date><risdate>2025</risdate><volume>28</volume><issue>2</issue><spage>126</spage><pages>126-</pages><artnum>126</artnum><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Federated Learning (FL) offers a collaborative approach to training machine learning models while preserving data privacy. However, FL faces significant privacy and security challenges, such as identity disclosure and model inference attacks. To this end, we propose a novel Blockchain-Based Framework for Privacy-Preserving Federated Learning (BPPFL), which integrates threshold signature authentication and threshold Paillier encryption with blockchain technology. The BPPFL framework secures participant authentication and protects against internal and external threats, while the blockchain provides an immutable ledger for recording transactions and model updates, ensuring transparency and security. Experimental results show that our framework significantly reduces computation and communication overhead compared to existing methods while maintaining high model accuracy and robust privacy guarantees. Our framework enhances the security and trustworthiness of FL applications, making it suitable for domains like healthcare, finance, and the IoT.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04834-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2025-04, Vol.28 (2), p.126, Article 126 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_3133093240 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial intelligence Authentication Automation Blockchain Communication Computer Communication Networks Computer Science Confidentiality Efficiency Federated learning Internet of Things Machine learning Operating Systems Privacy Processor Architectures Security |
title | Bppfl: a blockchain-based framework for privacy-preserving federated learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bppfl:%20a%20blockchain-based%20framework%20for%20privacy-preserving%20federated%20learning&rft.jtitle=Cluster%20computing&rft.au=Asad,%20Muhammad&rft.date=2025-04-01&rft.volume=28&rft.issue=2&rft.spage=126&rft.pages=126-&rft.artnum=126&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04834-4&rft_dat=%3Cproquest_cross%3E3133093240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133093240&rft_id=info:pmid/&rfr_iscdi=true |