Generation of air lubrication within pyroclastic density currents
Pyroclastic density currents are highly dangerous ground-hugging currents from volcanoes that cause >50% of volcanic fatalities globally. These hot mixtures of volcanic particles and gas exhibit remarkable fluidity, which allows them to transport thousands to millions of tonnes of volcanic materi...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2019-05, Vol.12 (5), p.381-386 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 5 |
container_start_page | 381 |
container_title | Nature geoscience |
container_volume | 12 |
creator | Lube, Gert Breard, Eric C. P. Jones, Jim Fullard, Luke Dufek, Josef Cronin, Shane J. Wang, Ting |
description | Pyroclastic density currents are highly dangerous ground-hugging currents from volcanoes that cause >50% of volcanic fatalities globally. These hot mixtures of volcanic particles and gas exhibit remarkable fluidity, which allows them to transport thousands to millions of tonnes of volcanic material across the Earth’s surface over tens to hundreds of kilometres, bypassing tortuous flow paths and ignoring rough substrates and flat and upsloping terrain. Their fluidity is attributed to an internal process that counters granular friction. However, it is difficult to measure inside pyroclastic density currents to quantify such a friction-defying mechanism. Here we show, through large-scale experiments and numerical multiphase modelling, that pyroclastic density currents generate their own air lubrication. This forms a near-frictionless basal region. Air lubrication develops under high basal shear when air is locally forced downwards by reversed pressure gradients and displaces particles upward. We show that air lubrication is enhanced through a positive feedback mechanism, explaining how pyroclastic density currents are able to propagate over slopes much shallower than the angle of repose of any natural granular material. This discovery necessitates a re-evaluation of hazard models that aim to predict the velocity, runout and spreading of pyroclastic density currents.
Pyroclastic density currents are able to travel large distances because they generate their own air lubrication, according to large-scale laboratory experiments. |
doi_str_mv | 10.1038/s41561-019-0338-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133070401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2217459234</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-5553da91640e00012a907287b10c0293ba82efd2eb835c6b25ee25c3f69c91c53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC5-hMPnaTYyl-QcGLnkM2zWpKzdYki_Tfu2UVT3qaYXjed-Ah5BLhGoGrmyxQ1kgBNQXOFWVHZIaNZBQ0qOOfXWlxSs5y3gDUIBo5I4t7H32yJfSx6rvKhlRthzYFN50-Q3kLsdrtU--2NpfgqrWPOZR95YaUfCz5nJx0dpv9xfeck5e72-flA1093T8uFytqBeeFSin52mqsBXgAQGY1NEw1LYIDpnlrFfPdmvlWcenqlknvmXS8q7XT6CSfk6upd5f6j8HnYjb9kOL40nDkHBoQgP9RjGEjpGZcjBROlEt9zsl3ZpfCu017g2AOPs3k04w-zcGnYWOGTZk8svHVp9_mv0Nfh1V2mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217459234</pqid></control><display><type>article</type><title>Generation of air lubrication within pyroclastic density currents</title><source>Springer Nature - Complete Springer Journals</source><creator>Lube, Gert ; Breard, Eric C. P. ; Jones, Jim ; Fullard, Luke ; Dufek, Josef ; Cronin, Shane J. ; Wang, Ting</creator><creatorcontrib>Lube, Gert ; Breard, Eric C. P. ; Jones, Jim ; Fullard, Luke ; Dufek, Josef ; Cronin, Shane J. ; Wang, Ting</creatorcontrib><description>Pyroclastic density currents are highly dangerous ground-hugging currents from volcanoes that cause >50% of volcanic fatalities globally. These hot mixtures of volcanic particles and gas exhibit remarkable fluidity, which allows them to transport thousands to millions of tonnes of volcanic material across the Earth’s surface over tens to hundreds of kilometres, bypassing tortuous flow paths and ignoring rough substrates and flat and upsloping terrain. Their fluidity is attributed to an internal process that counters granular friction. However, it is difficult to measure inside pyroclastic density currents to quantify such a friction-defying mechanism. Here we show, through large-scale experiments and numerical multiphase modelling, that pyroclastic density currents generate their own air lubrication. This forms a near-frictionless basal region. Air lubrication develops under high basal shear when air is locally forced downwards by reversed pressure gradients and displaces particles upward. We show that air lubrication is enhanced through a positive feedback mechanism, explaining how pyroclastic density currents are able to propagate over slopes much shallower than the angle of repose of any natural granular material. This discovery necessitates a re-evaluation of hazard models that aim to predict the velocity, runout and spreading of pyroclastic density currents.
Pyroclastic density currents are able to travel large distances because they generate their own air lubrication, according to large-scale laboratory experiments.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-019-0338-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151 ; 704/4111 ; Air ; Air flow ; Angle of repose ; Atmospheric pressure ; Density ; Density currents ; Earth ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Earth surface ; Earth System Sciences ; Effectiveness ; Experiments ; Flow paths ; Fluidity ; Friction ; Geochemistry ; Geology ; Geophysics/Geodesy ; Granular materials ; Laboratory experimentation ; Laboratory experiments ; Lubrication ; Mathematical models ; Positive feedback ; Pressure gradients ; Slope ; Substrates ; Viscosity ; Volcanic activity ; Volcanic gases ; Volcanoes</subject><ispartof>Nature geoscience, 2019-05, Vol.12 (5), p.381-386</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-5553da91640e00012a907287b10c0293ba82efd2eb835c6b25ee25c3f69c91c53</citedby><cites>FETCH-LOGICAL-a433t-5553da91640e00012a907287b10c0293ba82efd2eb835c6b25ee25c3f69c91c53</cites><orcidid>0000-0002-0901-1203 ; 0000-0001-7499-603X ; 0000-0002-5259-5152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-019-0338-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-019-0338-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lube, Gert</creatorcontrib><creatorcontrib>Breard, Eric C. P.</creatorcontrib><creatorcontrib>Jones, Jim</creatorcontrib><creatorcontrib>Fullard, Luke</creatorcontrib><creatorcontrib>Dufek, Josef</creatorcontrib><creatorcontrib>Cronin, Shane J.</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><title>Generation of air lubrication within pyroclastic density currents</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Pyroclastic density currents are highly dangerous ground-hugging currents from volcanoes that cause >50% of volcanic fatalities globally. These hot mixtures of volcanic particles and gas exhibit remarkable fluidity, which allows them to transport thousands to millions of tonnes of volcanic material across the Earth’s surface over tens to hundreds of kilometres, bypassing tortuous flow paths and ignoring rough substrates and flat and upsloping terrain. Their fluidity is attributed to an internal process that counters granular friction. However, it is difficult to measure inside pyroclastic density currents to quantify such a friction-defying mechanism. Here we show, through large-scale experiments and numerical multiphase modelling, that pyroclastic density currents generate their own air lubrication. This forms a near-frictionless basal region. Air lubrication develops under high basal shear when air is locally forced downwards by reversed pressure gradients and displaces particles upward. We show that air lubrication is enhanced through a positive feedback mechanism, explaining how pyroclastic density currents are able to propagate over slopes much shallower than the angle of repose of any natural granular material. This discovery necessitates a re-evaluation of hazard models that aim to predict the velocity, runout and spreading of pyroclastic density currents.
Pyroclastic density currents are able to travel large distances because they generate their own air lubrication, according to large-scale laboratory experiments.</description><subject>704/2151</subject><subject>704/4111</subject><subject>Air</subject><subject>Air flow</subject><subject>Angle of repose</subject><subject>Atmospheric pressure</subject><subject>Density</subject><subject>Density currents</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Earth surface</subject><subject>Earth System Sciences</subject><subject>Effectiveness</subject><subject>Experiments</subject><subject>Flow paths</subject><subject>Fluidity</subject><subject>Friction</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Granular materials</subject><subject>Laboratory experimentation</subject><subject>Laboratory experiments</subject><subject>Lubrication</subject><subject>Mathematical models</subject><subject>Positive feedback</subject><subject>Pressure gradients</subject><subject>Slope</subject><subject>Substrates</subject><subject>Viscosity</subject><subject>Volcanic activity</subject><subject>Volcanic gases</subject><subject>Volcanoes</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wNuC5-hMPnaTYyl-QcGLnkM2zWpKzdYki_Tfu2UVT3qaYXjed-Ah5BLhGoGrmyxQ1kgBNQXOFWVHZIaNZBQ0qOOfXWlxSs5y3gDUIBo5I4t7H32yJfSx6rvKhlRthzYFN50-Q3kLsdrtU--2NpfgqrWPOZR95YaUfCz5nJx0dpv9xfeck5e72-flA1093T8uFytqBeeFSin52mqsBXgAQGY1NEw1LYIDpnlrFfPdmvlWcenqlknvmXS8q7XT6CSfk6upd5f6j8HnYjb9kOL40nDkHBoQgP9RjGEjpGZcjBROlEt9zsl3ZpfCu017g2AOPs3k04w-zcGnYWOGTZk8svHVp9_mv0Nfh1V2mw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Lube, Gert</creator><creator>Breard, Eric C. P.</creator><creator>Jones, Jim</creator><creator>Fullard, Luke</creator><creator>Dufek, Josef</creator><creator>Cronin, Shane J.</creator><creator>Wang, Ting</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0901-1203</orcidid><orcidid>https://orcid.org/0000-0001-7499-603X</orcidid><orcidid>https://orcid.org/0000-0002-5259-5152</orcidid></search><sort><creationdate>20190501</creationdate><title>Generation of air lubrication within pyroclastic density currents</title><author>Lube, Gert ; Breard, Eric C. P. ; Jones, Jim ; Fullard, Luke ; Dufek, Josef ; Cronin, Shane J. ; Wang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-5553da91640e00012a907287b10c0293ba82efd2eb835c6b25ee25c3f69c91c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>704/2151</topic><topic>704/4111</topic><topic>Air</topic><topic>Air flow</topic><topic>Angle of repose</topic><topic>Atmospheric pressure</topic><topic>Density</topic><topic>Density currents</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Earth surface</topic><topic>Earth System Sciences</topic><topic>Effectiveness</topic><topic>Experiments</topic><topic>Flow paths</topic><topic>Fluidity</topic><topic>Friction</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Granular materials</topic><topic>Laboratory experimentation</topic><topic>Laboratory experiments</topic><topic>Lubrication</topic><topic>Mathematical models</topic><topic>Positive feedback</topic><topic>Pressure gradients</topic><topic>Slope</topic><topic>Substrates</topic><topic>Viscosity</topic><topic>Volcanic activity</topic><topic>Volcanic gases</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lube, Gert</creatorcontrib><creatorcontrib>Breard, Eric C. P.</creatorcontrib><creatorcontrib>Jones, Jim</creatorcontrib><creatorcontrib>Fullard, Luke</creatorcontrib><creatorcontrib>Dufek, Josef</creatorcontrib><creatorcontrib>Cronin, Shane J.</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lube, Gert</au><au>Breard, Eric C. P.</au><au>Jones, Jim</au><au>Fullard, Luke</au><au>Dufek, Josef</au><au>Cronin, Shane J.</au><au>Wang, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of air lubrication within pyroclastic density currents</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>12</volume><issue>5</issue><spage>381</spage><epage>386</epage><pages>381-386</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Pyroclastic density currents are highly dangerous ground-hugging currents from volcanoes that cause >50% of volcanic fatalities globally. These hot mixtures of volcanic particles and gas exhibit remarkable fluidity, which allows them to transport thousands to millions of tonnes of volcanic material across the Earth’s surface over tens to hundreds of kilometres, bypassing tortuous flow paths and ignoring rough substrates and flat and upsloping terrain. Their fluidity is attributed to an internal process that counters granular friction. However, it is difficult to measure inside pyroclastic density currents to quantify such a friction-defying mechanism. Here we show, through large-scale experiments and numerical multiphase modelling, that pyroclastic density currents generate their own air lubrication. This forms a near-frictionless basal region. Air lubrication develops under high basal shear when air is locally forced downwards by reversed pressure gradients and displaces particles upward. We show that air lubrication is enhanced through a positive feedback mechanism, explaining how pyroclastic density currents are able to propagate over slopes much shallower than the angle of repose of any natural granular material. This discovery necessitates a re-evaluation of hazard models that aim to predict the velocity, runout and spreading of pyroclastic density currents.
Pyroclastic density currents are able to travel large distances because they generate their own air lubrication, according to large-scale laboratory experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-019-0338-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0901-1203</orcidid><orcidid>https://orcid.org/0000-0001-7499-603X</orcidid><orcidid>https://orcid.org/0000-0002-5259-5152</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2019-05, Vol.12 (5), p.381-386 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_3133070401 |
source | Springer Nature - Complete Springer Journals |
subjects | 704/2151 704/4111 Air Air flow Angle of repose Atmospheric pressure Density Density currents Earth Earth and Environmental Science Earth science Earth Sciences Earth surface Earth System Sciences Effectiveness Experiments Flow paths Fluidity Friction Geochemistry Geology Geophysics/Geodesy Granular materials Laboratory experimentation Laboratory experiments Lubrication Mathematical models Positive feedback Pressure gradients Slope Substrates Viscosity Volcanic activity Volcanic gases Volcanoes |
title | Generation of air lubrication within pyroclastic density currents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20air%20lubrication%20within%20pyroclastic%20density%20currents&rft.jtitle=Nature%20geoscience&rft.au=Lube,%20Gert&rft.date=2019-05-01&rft.volume=12&rft.issue=5&rft.spage=381&rft.epage=386&rft.pages=381-386&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-019-0338-2&rft_dat=%3Cproquest_cross%3E2217459234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2217459234&rft_id=info:pmid/&rfr_iscdi=true |