Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels

Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composites science 2024-11, Vol.8 (11), p.459
Hauptverfasser: Dagdag, Omar, Kim, Hansang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 459
container_title Journal of composites science
container_volume 8
creator Dagdag, Omar
Kim, Hansang
description Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/EP materials, producing problems for their long-term performance and safety in hydrogen storage tank applications. This review paper investigates how low temperatures affect the tensile strength, modulus, and fracture toughness of CF/EP materials, as well as the essential interfacial interactions between carbon fibers (CFs) and the epoxy matrix (EP) in cryogenic environments. Material toughening techniques have evolved significantly, including the incorporation of nano-fillers, hybrid fibers, and enhanced resin formulations, to improve the durability and performance of CF/EP materials in cryogenic conditions. This review also assesses the hydrogen barrier properties of various composites, emphasizing the importance of reducing hydrogen permeability in order to retain material integrity. This review concludes by highlighting the importance of optimizing CF/EP composite design and fabrication for long-term performance and safety in hydrogen storage systems. It examines the prospects for using CF/EP composites in hydrogen storage tanks, as well as future research directions.
doi_str_mv 10.3390/jcs8110459
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133065672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818333728</galeid><sourcerecordid>A818333728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1741-5c935836af063797860b4ee37693defd26245c8daa92b641fe7ce2914c6e28dd3</originalsourceid><addsrcrecordid>eNpNUNtKw0AUXETBUvviFyz4JqTuLXt5LKG1hYLgDX0Km81JSWmycTcF8_emVFDOwxyGmTmcQeiWkjnnhjzsXdSUEpGaCzRhKRGJUOrj8t9-jWYx7gkhTBlBDJ-gzywMfgdt7fCm6azrsW9xZkMxwqouICTPULeVDw5KvOz894Az33Q-1j1EPPJ4PZThlIBfeh_sDvA7xAiHeIOuKnuIMPvFKXpbLV-zdbJ9etxki23iqBI0SZ3hqebSVkRyZZSWpBAAXEnDS6hKJplInS6tNayQglagHDBDhZPAdFnyKbo753bBfx0h9vneH0M7nsw55ZzIVCo2quZn1c4eID991AfrximhqZ1voapHfqGp5pwrpkfD_dnggo8xQJV3oW5sGHJK8lPd-V_d_AdRunG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133065672</pqid></control><display><type>article</type><title>Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dagdag, Omar ; Kim, Hansang</creator><creatorcontrib>Dagdag, Omar ; Kim, Hansang</creatorcontrib><description>Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/EP materials, producing problems for their long-term performance and safety in hydrogen storage tank applications. This review paper investigates how low temperatures affect the tensile strength, modulus, and fracture toughness of CF/EP materials, as well as the essential interfacial interactions between carbon fibers (CFs) and the epoxy matrix (EP) in cryogenic environments. Material toughening techniques have evolved significantly, including the incorporation of nano-fillers, hybrid fibers, and enhanced resin formulations, to improve the durability and performance of CF/EP materials in cryogenic conditions. This review also assesses the hydrogen barrier properties of various composites, emphasizing the importance of reducing hydrogen permeability in order to retain material integrity. This review concludes by highlighting the importance of optimizing CF/EP composite design and fabrication for long-term performance and safety in hydrogen storage systems. It examines the prospects for using CF/EP composites in hydrogen storage tanks, as well as future research directions.</description><identifier>ISSN: 2504-477X</identifier><identifier>EISSN: 2504-477X</identifier><identifier>DOI: 10.3390/jcs8110459</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bonding strength ; Carbon fiber reinforced plastics ; Carbon fibers ; Carbon-epoxy composites ; Cryoforming ; Cryogenic temperature ; Curing ; Design optimization ; Epoxy resins ; Failure ; Fiber composites ; Fiber reinforced polymers ; Fracture toughness ; Fractures (Geology) ; Heat resistance ; Hydrogen ; Hydrogen storage ; Interfacial bonding ; Investigations ; Low temperature ; Mechanical properties ; Nanomaterials ; Nanoparticles ; Polyethylene glycol ; Retention tanks ; Rubber ; Shear strength ; Storage systems ; Storage tanks ; Storage vessels ; Strength to weight ratio ; Temperature effects ; Tensile strength</subject><ispartof>Journal of composites science, 2024-11, Vol.8 (11), p.459</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1741-5c935836af063797860b4ee37693defd26245c8daa92b641fe7ce2914c6e28dd3</cites><orcidid>0000-0002-9723-1344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Dagdag, Omar</creatorcontrib><creatorcontrib>Kim, Hansang</creatorcontrib><title>Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels</title><title>Journal of composites science</title><description>Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/EP materials, producing problems for their long-term performance and safety in hydrogen storage tank applications. This review paper investigates how low temperatures affect the tensile strength, modulus, and fracture toughness of CF/EP materials, as well as the essential interfacial interactions between carbon fibers (CFs) and the epoxy matrix (EP) in cryogenic environments. Material toughening techniques have evolved significantly, including the incorporation of nano-fillers, hybrid fibers, and enhanced resin formulations, to improve the durability and performance of CF/EP materials in cryogenic conditions. This review also assesses the hydrogen barrier properties of various composites, emphasizing the importance of reducing hydrogen permeability in order to retain material integrity. This review concludes by highlighting the importance of optimizing CF/EP composite design and fabrication for long-term performance and safety in hydrogen storage systems. It examines the prospects for using CF/EP composites in hydrogen storage tanks, as well as future research directions.</description><subject>Bonding strength</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Carbon-epoxy composites</subject><subject>Cryoforming</subject><subject>Cryogenic temperature</subject><subject>Curing</subject><subject>Design optimization</subject><subject>Epoxy resins</subject><subject>Failure</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fracture toughness</subject><subject>Fractures (Geology)</subject><subject>Heat resistance</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Interfacial bonding</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Polyethylene glycol</subject><subject>Retention tanks</subject><subject>Rubber</subject><subject>Shear strength</subject><subject>Storage systems</subject><subject>Storage tanks</subject><subject>Storage vessels</subject><subject>Strength to weight ratio</subject><subject>Temperature effects</subject><subject>Tensile strength</subject><issn>2504-477X</issn><issn>2504-477X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUNtKw0AUXETBUvviFyz4JqTuLXt5LKG1hYLgDX0Km81JSWmycTcF8_emVFDOwxyGmTmcQeiWkjnnhjzsXdSUEpGaCzRhKRGJUOrj8t9-jWYx7gkhTBlBDJ-gzywMfgdt7fCm6azrsW9xZkMxwqouICTPULeVDw5KvOz894Az33Q-1j1EPPJ4PZThlIBfeh_sDvA7xAiHeIOuKnuIMPvFKXpbLV-zdbJ9etxki23iqBI0SZ3hqebSVkRyZZSWpBAAXEnDS6hKJplInS6tNayQglagHDBDhZPAdFnyKbo753bBfx0h9vneH0M7nsw55ZzIVCo2quZn1c4eID991AfrximhqZ1voapHfqGp5pwrpkfD_dnggo8xQJV3oW5sGHJK8lPd-V_d_AdRunG0</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Dagdag, Omar</creator><creator>Kim, Hansang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9723-1344</orcidid></search><sort><creationdate>20241101</creationdate><title>Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels</title><author>Dagdag, Omar ; Kim, Hansang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1741-5c935836af063797860b4ee37693defd26245c8daa92b641fe7ce2914c6e28dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Carbon-epoxy composites</topic><topic>Cryoforming</topic><topic>Cryogenic temperature</topic><topic>Curing</topic><topic>Design optimization</topic><topic>Epoxy resins</topic><topic>Failure</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fracture toughness</topic><topic>Fractures (Geology)</topic><topic>Heat resistance</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Interfacial bonding</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Polyethylene glycol</topic><topic>Retention tanks</topic><topic>Rubber</topic><topic>Shear strength</topic><topic>Storage systems</topic><topic>Storage tanks</topic><topic>Storage vessels</topic><topic>Strength to weight ratio</topic><topic>Temperature effects</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagdag, Omar</creatorcontrib><creatorcontrib>Kim, Hansang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of composites science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagdag, Omar</au><au>Kim, Hansang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels</atitle><jtitle>Journal of composites science</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>8</volume><issue>11</issue><spage>459</spage><pages>459-</pages><issn>2504-477X</issn><eissn>2504-477X</eissn><abstract>Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/EP materials, producing problems for their long-term performance and safety in hydrogen storage tank applications. This review paper investigates how low temperatures affect the tensile strength, modulus, and fracture toughness of CF/EP materials, as well as the essential interfacial interactions between carbon fibers (CFs) and the epoxy matrix (EP) in cryogenic environments. Material toughening techniques have evolved significantly, including the incorporation of nano-fillers, hybrid fibers, and enhanced resin formulations, to improve the durability and performance of CF/EP materials in cryogenic conditions. This review also assesses the hydrogen barrier properties of various composites, emphasizing the importance of reducing hydrogen permeability in order to retain material integrity. This review concludes by highlighting the importance of optimizing CF/EP composite design and fabrication for long-term performance and safety in hydrogen storage systems. It examines the prospects for using CF/EP composites in hydrogen storage tanks, as well as future research directions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jcs8110459</doi><orcidid>https://orcid.org/0000-0002-9723-1344</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-477X
ispartof Journal of composites science, 2024-11, Vol.8 (11), p.459
issn 2504-477X
2504-477X
language eng
recordid cdi_proquest_journals_3133065672
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Bonding strength
Carbon fiber reinforced plastics
Carbon fibers
Carbon-epoxy composites
Cryoforming
Cryogenic temperature
Curing
Design optimization
Epoxy resins
Failure
Fiber composites
Fiber reinforced polymers
Fracture toughness
Fractures (Geology)
Heat resistance
Hydrogen
Hydrogen storage
Interfacial bonding
Investigations
Low temperature
Mechanical properties
Nanomaterials
Nanoparticles
Polyethylene glycol
Retention tanks
Rubber
Shear strength
Storage systems
Storage tanks
Storage vessels
Strength to weight ratio
Temperature effects
Tensile strength
title Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20Impact%20on%20Carbon%20Fiber-Reinforced%20Epoxy%20Composites%20for%20Hydrogen%20Storage%20Vessels&rft.jtitle=Journal%20of%20composites%20science&rft.au=Dagdag,%20Omar&rft.date=2024-11-01&rft.volume=8&rft.issue=11&rft.spage=459&rft.pages=459-&rft.issn=2504-477X&rft.eissn=2504-477X&rft_id=info:doi/10.3390/jcs8110459&rft_dat=%3Cgale_proqu%3EA818333728%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133065672&rft_id=info:pmid/&rft_galeid=A818333728&rfr_iscdi=true