Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels
Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/E...
Gespeichert in:
Veröffentlicht in: | Journal of composites science 2024-11, Vol.8 (11), p.459 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 459 |
container_title | Journal of composites science |
container_volume | 8 |
creator | Dagdag, Omar Kim, Hansang |
description | Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/EP materials, producing problems for their long-term performance and safety in hydrogen storage tank applications. This review paper investigates how low temperatures affect the tensile strength, modulus, and fracture toughness of CF/EP materials, as well as the essential interfacial interactions between carbon fibers (CFs) and the epoxy matrix (EP) in cryogenic environments. Material toughening techniques have evolved significantly, including the incorporation of nano-fillers, hybrid fibers, and enhanced resin formulations, to improve the durability and performance of CF/EP materials in cryogenic conditions. This review also assesses the hydrogen barrier properties of various composites, emphasizing the importance of reducing hydrogen permeability in order to retain material integrity. This review concludes by highlighting the importance of optimizing CF/EP composite design and fabrication for long-term performance and safety in hydrogen storage systems. It examines the prospects for using CF/EP composites in hydrogen storage tanks, as well as future research directions. |
doi_str_mv | 10.3390/jcs8110459 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133065672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818333728</galeid><sourcerecordid>A818333728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1741-5c935836af063797860b4ee37693defd26245c8daa92b641fe7ce2914c6e28dd3</originalsourceid><addsrcrecordid>eNpNUNtKw0AUXETBUvviFyz4JqTuLXt5LKG1hYLgDX0Km81JSWmycTcF8_emVFDOwxyGmTmcQeiWkjnnhjzsXdSUEpGaCzRhKRGJUOrj8t9-jWYx7gkhTBlBDJ-gzywMfgdt7fCm6azrsW9xZkMxwqouICTPULeVDw5KvOz894Az33Q-1j1EPPJ4PZThlIBfeh_sDvA7xAiHeIOuKnuIMPvFKXpbLV-zdbJ9etxki23iqBI0SZ3hqebSVkRyZZSWpBAAXEnDS6hKJplInS6tNayQglagHDBDhZPAdFnyKbo753bBfx0h9vneH0M7nsw55ZzIVCo2quZn1c4eID991AfrximhqZ1voapHfqGp5pwrpkfD_dnggo8xQJV3oW5sGHJK8lPd-V_d_AdRunG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133065672</pqid></control><display><type>article</type><title>Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dagdag, Omar ; Kim, Hansang</creator><creatorcontrib>Dagdag, Omar ; Kim, Hansang</creatorcontrib><description>Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/EP materials, producing problems for their long-term performance and safety in hydrogen storage tank applications. This review paper investigates how low temperatures affect the tensile strength, modulus, and fracture toughness of CF/EP materials, as well as the essential interfacial interactions between carbon fibers (CFs) and the epoxy matrix (EP) in cryogenic environments. Material toughening techniques have evolved significantly, including the incorporation of nano-fillers, hybrid fibers, and enhanced resin formulations, to improve the durability and performance of CF/EP materials in cryogenic conditions. This review also assesses the hydrogen barrier properties of various composites, emphasizing the importance of reducing hydrogen permeability in order to retain material integrity. This review concludes by highlighting the importance of optimizing CF/EP composite design and fabrication for long-term performance and safety in hydrogen storage systems. It examines the prospects for using CF/EP composites in hydrogen storage tanks, as well as future research directions.</description><identifier>ISSN: 2504-477X</identifier><identifier>EISSN: 2504-477X</identifier><identifier>DOI: 10.3390/jcs8110459</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bonding strength ; Carbon fiber reinforced plastics ; Carbon fibers ; Carbon-epoxy composites ; Cryoforming ; Cryogenic temperature ; Curing ; Design optimization ; Epoxy resins ; Failure ; Fiber composites ; Fiber reinforced polymers ; Fracture toughness ; Fractures (Geology) ; Heat resistance ; Hydrogen ; Hydrogen storage ; Interfacial bonding ; Investigations ; Low temperature ; Mechanical properties ; Nanomaterials ; Nanoparticles ; Polyethylene glycol ; Retention tanks ; Rubber ; Shear strength ; Storage systems ; Storage tanks ; Storage vessels ; Strength to weight ratio ; Temperature effects ; Tensile strength</subject><ispartof>Journal of composites science, 2024-11, Vol.8 (11), p.459</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1741-5c935836af063797860b4ee37693defd26245c8daa92b641fe7ce2914c6e28dd3</cites><orcidid>0000-0002-9723-1344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Dagdag, Omar</creatorcontrib><creatorcontrib>Kim, Hansang</creatorcontrib><title>Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels</title><title>Journal of composites science</title><description>Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/EP materials, producing problems for their long-term performance and safety in hydrogen storage tank applications. This review paper investigates how low temperatures affect the tensile strength, modulus, and fracture toughness of CF/EP materials, as well as the essential interfacial interactions between carbon fibers (CFs) and the epoxy matrix (EP) in cryogenic environments. Material toughening techniques have evolved significantly, including the incorporation of nano-fillers, hybrid fibers, and enhanced resin formulations, to improve the durability and performance of CF/EP materials in cryogenic conditions. This review also assesses the hydrogen barrier properties of various composites, emphasizing the importance of reducing hydrogen permeability in order to retain material integrity. This review concludes by highlighting the importance of optimizing CF/EP composite design and fabrication for long-term performance and safety in hydrogen storage systems. It examines the prospects for using CF/EP composites in hydrogen storage tanks, as well as future research directions.</description><subject>Bonding strength</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Carbon-epoxy composites</subject><subject>Cryoforming</subject><subject>Cryogenic temperature</subject><subject>Curing</subject><subject>Design optimization</subject><subject>Epoxy resins</subject><subject>Failure</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fracture toughness</subject><subject>Fractures (Geology)</subject><subject>Heat resistance</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Interfacial bonding</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Polyethylene glycol</subject><subject>Retention tanks</subject><subject>Rubber</subject><subject>Shear strength</subject><subject>Storage systems</subject><subject>Storage tanks</subject><subject>Storage vessels</subject><subject>Strength to weight ratio</subject><subject>Temperature effects</subject><subject>Tensile strength</subject><issn>2504-477X</issn><issn>2504-477X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUNtKw0AUXETBUvviFyz4JqTuLXt5LKG1hYLgDX0Km81JSWmycTcF8_emVFDOwxyGmTmcQeiWkjnnhjzsXdSUEpGaCzRhKRGJUOrj8t9-jWYx7gkhTBlBDJ-gzywMfgdt7fCm6azrsW9xZkMxwqouICTPULeVDw5KvOz894Az33Q-1j1EPPJ4PZThlIBfeh_sDvA7xAiHeIOuKnuIMPvFKXpbLV-zdbJ9etxki23iqBI0SZ3hqebSVkRyZZSWpBAAXEnDS6hKJplInS6tNayQglagHDBDhZPAdFnyKbo753bBfx0h9vneH0M7nsw55ZzIVCo2quZn1c4eID991AfrximhqZ1voapHfqGp5pwrpkfD_dnggo8xQJV3oW5sGHJK8lPd-V_d_AdRunG0</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Dagdag, Omar</creator><creator>Kim, Hansang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9723-1344</orcidid></search><sort><creationdate>20241101</creationdate><title>Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels</title><author>Dagdag, Omar ; Kim, Hansang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1741-5c935836af063797860b4ee37693defd26245c8daa92b641fe7ce2914c6e28dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Carbon-epoxy composites</topic><topic>Cryoforming</topic><topic>Cryogenic temperature</topic><topic>Curing</topic><topic>Design optimization</topic><topic>Epoxy resins</topic><topic>Failure</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fracture toughness</topic><topic>Fractures (Geology)</topic><topic>Heat resistance</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Interfacial bonding</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Polyethylene glycol</topic><topic>Retention tanks</topic><topic>Rubber</topic><topic>Shear strength</topic><topic>Storage systems</topic><topic>Storage tanks</topic><topic>Storage vessels</topic><topic>Strength to weight ratio</topic><topic>Temperature effects</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagdag, Omar</creatorcontrib><creatorcontrib>Kim, Hansang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of composites science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagdag, Omar</au><au>Kim, Hansang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels</atitle><jtitle>Journal of composites science</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>8</volume><issue>11</issue><spage>459</spage><pages>459-</pages><issn>2504-477X</issn><eissn>2504-477X</eissn><abstract>Carbon fiber-reinforced epoxy (CF/EP) composites are attractive materials for hydrogen storage tanks due to their high strength-to-weight ratio and outstanding chemical resistance. However, cryogenic temperatures (CTs) have a substantial impact on the tensile strength and interfacial bonding of CF/EP materials, producing problems for their long-term performance and safety in hydrogen storage tank applications. This review paper investigates how low temperatures affect the tensile strength, modulus, and fracture toughness of CF/EP materials, as well as the essential interfacial interactions between carbon fibers (CFs) and the epoxy matrix (EP) in cryogenic environments. Material toughening techniques have evolved significantly, including the incorporation of nano-fillers, hybrid fibers, and enhanced resin formulations, to improve the durability and performance of CF/EP materials in cryogenic conditions. This review also assesses the hydrogen barrier properties of various composites, emphasizing the importance of reducing hydrogen permeability in order to retain material integrity. This review concludes by highlighting the importance of optimizing CF/EP composite design and fabrication for long-term performance and safety in hydrogen storage systems. It examines the prospects for using CF/EP composites in hydrogen storage tanks, as well as future research directions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jcs8110459</doi><orcidid>https://orcid.org/0000-0002-9723-1344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-477X |
ispartof | Journal of composites science, 2024-11, Vol.8 (11), p.459 |
issn | 2504-477X 2504-477X |
language | eng |
recordid | cdi_proquest_journals_3133065672 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Bonding strength Carbon fiber reinforced plastics Carbon fibers Carbon-epoxy composites Cryoforming Cryogenic temperature Curing Design optimization Epoxy resins Failure Fiber composites Fiber reinforced polymers Fracture toughness Fractures (Geology) Heat resistance Hydrogen Hydrogen storage Interfacial bonding Investigations Low temperature Mechanical properties Nanomaterials Nanoparticles Polyethylene glycol Retention tanks Rubber Shear strength Storage systems Storage tanks Storage vessels Strength to weight ratio Temperature effects Tensile strength |
title | Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20Impact%20on%20Carbon%20Fiber-Reinforced%20Epoxy%20Composites%20for%20Hydrogen%20Storage%20Vessels&rft.jtitle=Journal%20of%20composites%20science&rft.au=Dagdag,%20Omar&rft.date=2024-11-01&rft.volume=8&rft.issue=11&rft.spage=459&rft.pages=459-&rft.issn=2504-477X&rft.eissn=2504-477X&rft_id=info:doi/10.3390/jcs8110459&rft_dat=%3Cgale_proqu%3EA818333728%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133065672&rft_id=info:pmid/&rft_galeid=A818333728&rfr_iscdi=true |