A Human-optimized Model Predictive Control Scheme and Extremum Seeking Parameter Estimator for Slip Control of Electric Race Cars
This paper presents a longitudinal slip control system for a rear-wheel-driven electric endurance race car. The control system integrates Model Predictive Control (MPC) with Extremum Seeking Control (ESC) to optimize the traction and regenerative braking performance of the powertrain. The MPC contai...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | de Vries, Wytze Jorn van Kampen Salazar, Mauro |
description | This paper presents a longitudinal slip control system for a rear-wheel-driven electric endurance race car. The control system integrates Model Predictive Control (MPC) with Extremum Seeking Control (ESC) to optimize the traction and regenerative braking performance of the powertrain. The MPC contains an analytical solution which results in a negligible computation time, whilst providing an optimal solution to a multi-objective optimization problem. The ESC algorithm allows continuous estimation of the optimal slip reference without assuming any prior knowledge of the tire dynamics. Finally, the control parameters are determined using a human-driven preference-based optimization algorithm in order to obtain the desired response. Simulation results and comparisons with other methods demonstrate the system's capability to automatically determine and track the optimal slip values, showing stability and performance under varying conditions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133044590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133044590</sourcerecordid><originalsourceid>FETCH-proquest_journals_31330445903</originalsourceid><addsrcrecordid>eNqNzM2KwjAUBeAgDIw4vsMF14WYtM64FKm4EcS6l5Deapz81JtUxJ1vbhfi2sXhLM7hG7ChkHKa_eVCfLNxjGfOuZj9iqKQQ_ZYwLpzymehTcaZO9awCTVa2BLWRidzRVgGnyhYqPQJHYLyNZS3ROg6BxXiv_FH2CpSDhMSlLGHVAoETZ_KmvYNhAZKizqR0bBTupcVxR_21SgbcfzqEZusyv1ynbUULh3GdDiHjnw_HeRUSp7nxZzLz15PDidQRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133044590</pqid></control><display><type>article</type><title>A Human-optimized Model Predictive Control Scheme and Extremum Seeking Parameter Estimator for Slip Control of Electric Race Cars</title><source>Free E- Journals</source><creator>de Vries, Wytze ; Jorn van Kampen ; Salazar, Mauro</creator><creatorcontrib>de Vries, Wytze ; Jorn van Kampen ; Salazar, Mauro</creatorcontrib><description>This paper presents a longitudinal slip control system for a rear-wheel-driven electric endurance race car. The control system integrates Model Predictive Control (MPC) with Extremum Seeking Control (ESC) to optimize the traction and regenerative braking performance of the powertrain. The MPC contains an analytical solution which results in a negligible computation time, whilst providing an optimal solution to a multi-objective optimization problem. The ESC algorithm allows continuous estimation of the optimal slip reference without assuming any prior knowledge of the tire dynamics. Finally, the control parameters are determined using a human-driven preference-based optimization algorithm in order to obtain the desired response. Simulation results and comparisons with other methods demonstrate the system's capability to automatically determine and track the optimal slip values, showing stability and performance under varying conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Control systems ; Exact solutions ; Multiple objective analysis ; Optimization ; Parameter estimation ; Powertrain ; Predictive control ; Race cars ; Regenerative braking ; Slip</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>de Vries, Wytze</creatorcontrib><creatorcontrib>Jorn van Kampen</creatorcontrib><creatorcontrib>Salazar, Mauro</creatorcontrib><title>A Human-optimized Model Predictive Control Scheme and Extremum Seeking Parameter Estimator for Slip Control of Electric Race Cars</title><title>arXiv.org</title><description>This paper presents a longitudinal slip control system for a rear-wheel-driven electric endurance race car. The control system integrates Model Predictive Control (MPC) with Extremum Seeking Control (ESC) to optimize the traction and regenerative braking performance of the powertrain. The MPC contains an analytical solution which results in a negligible computation time, whilst providing an optimal solution to a multi-objective optimization problem. The ESC algorithm allows continuous estimation of the optimal slip reference without assuming any prior knowledge of the tire dynamics. Finally, the control parameters are determined using a human-driven preference-based optimization algorithm in order to obtain the desired response. Simulation results and comparisons with other methods demonstrate the system's capability to automatically determine and track the optimal slip values, showing stability and performance under varying conditions.</description><subject>Algorithms</subject><subject>Control systems</subject><subject>Exact solutions</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Powertrain</subject><subject>Predictive control</subject><subject>Race cars</subject><subject>Regenerative braking</subject><subject>Slip</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzM2KwjAUBeAgDIw4vsMF14WYtM64FKm4EcS6l5Deapz81JtUxJ1vbhfi2sXhLM7hG7ChkHKa_eVCfLNxjGfOuZj9iqKQQ_ZYwLpzymehTcaZO9awCTVa2BLWRidzRVgGnyhYqPQJHYLyNZS3ROg6BxXiv_FH2CpSDhMSlLGHVAoETZ_KmvYNhAZKizqR0bBTupcVxR_21SgbcfzqEZusyv1ynbUULh3GdDiHjnw_HeRUSp7nxZzLz15PDidQRQ</recordid><startdate>20241124</startdate><enddate>20241124</enddate><creator>de Vries, Wytze</creator><creator>Jorn van Kampen</creator><creator>Salazar, Mauro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241124</creationdate><title>A Human-optimized Model Predictive Control Scheme and Extremum Seeking Parameter Estimator for Slip Control of Electric Race Cars</title><author>de Vries, Wytze ; Jorn van Kampen ; Salazar, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31330445903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Control systems</topic><topic>Exact solutions</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Powertrain</topic><topic>Predictive control</topic><topic>Race cars</topic><topic>Regenerative braking</topic><topic>Slip</topic><toplevel>online_resources</toplevel><creatorcontrib>de Vries, Wytze</creatorcontrib><creatorcontrib>Jorn van Kampen</creatorcontrib><creatorcontrib>Salazar, Mauro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vries, Wytze</au><au>Jorn van Kampen</au><au>Salazar, Mauro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Human-optimized Model Predictive Control Scheme and Extremum Seeking Parameter Estimator for Slip Control of Electric Race Cars</atitle><jtitle>arXiv.org</jtitle><date>2024-11-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents a longitudinal slip control system for a rear-wheel-driven electric endurance race car. The control system integrates Model Predictive Control (MPC) with Extremum Seeking Control (ESC) to optimize the traction and regenerative braking performance of the powertrain. The MPC contains an analytical solution which results in a negligible computation time, whilst providing an optimal solution to a multi-objective optimization problem. The ESC algorithm allows continuous estimation of the optimal slip reference without assuming any prior knowledge of the tire dynamics. Finally, the control parameters are determined using a human-driven preference-based optimization algorithm in order to obtain the desired response. Simulation results and comparisons with other methods demonstrate the system's capability to automatically determine and track the optimal slip values, showing stability and performance under varying conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3133044590 |
source | Free E- Journals |
subjects | Algorithms Control systems Exact solutions Multiple objective analysis Optimization Parameter estimation Powertrain Predictive control Race cars Regenerative braking Slip |
title | A Human-optimized Model Predictive Control Scheme and Extremum Seeking Parameter Estimator for Slip Control of Electric Race Cars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Human-optimized%20Model%20Predictive%20Control%20Scheme%20and%20Extremum%20Seeking%20Parameter%20Estimator%20for%20Slip%20Control%20of%20Electric%20Race%20Cars&rft.jtitle=arXiv.org&rft.au=de%20Vries,%20Wytze&rft.date=2024-11-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133044590%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133044590&rft_id=info:pmid/&rfr_iscdi=true |