Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance

In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2024-11, Vol.14 (11), p.828
Hauptverfasser: Li, Ruixin, Zhan, Faqi, Wen, Guochang, Wang, Bing, Qi, Jiahao, Liu, Yisi, Feng, Chenchen, La, Peiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 828
container_title Catalysts
container_volume 14
creator Li, Ruixin
Zhan, Faqi
Wen, Guochang
Wang, Bing
Qi, Jiahao
Liu, Yisi
Feng, Chenchen
La, Peiqing
description In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptimal. This study uses the hydrothermal–electrodeposition–dip coating–calcination method to prepare a microcrystalline WO3 photoanode thin film as the substrate material and combines it with nanocrystalline BiVO4 to form a micro–nano-structured heterojunction photoanode to enhance the intrinsic and surface/interface charge transport properties of the photoanode. Under the condition of 1.23 V vs. RHE, the photoelectric current density reaches 1.09 mA cm−2, which is twice that of WO3. Furthermore, by using a simple impregnation–mineralization method to load the amorphous FeOOH catalyst, a noncrystalline–crystalline composite structure is formed to increase the number of active sites on the surface and reduce the overpotential of water oxidation, lowering the onset potential from 0.8 V to 0.6 V (vs. RHE). The photoelectric current density is further increased to 2.04 mA cm−2 (at 1.23 V vs. RHE). The micro–nano-structure and noncrystalline–crystalline composite structure proposed in this study will provide valuable insights for the design and synthesis of high-efficiency photoelectrocatalysts.
doi_str_mv 10.3390/catal14110828
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133025284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133025284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c151t-79454eb88019de1207555388b5a42299d5630f75fa5918658fab14e50ae4f66d3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EElXpkbslzqF2bKfOEaqWIhVSqfwcI9dZK6nSuNiOqt54h74hT0JKOcBedqX9NKMZhK4puWUsJUOtgqopp5TIWJ6hXkxGLOKM8_M_9yUaeL8m3aSUSSp6aDdVuqoBL_dNKMFXHluDFX6qtLNfn4dn1dhoGVyrQ-ugwFPIstnwvnrL-PA9Y3hR2mA7pgC8q0KJJ02pGt2BPw-oQQdndQmbSqsaL8AZ6zZH4gpdGFV7GPzuPnqdTl7Gs2iePTyO7-aRpoKGaJRywWElJaFpAbQLIoRgUq6E4nGcpoVIGDEjYZRIqUyENGpFOQiigJskKVgf3Zx0t85-tOBDvratazrLnFHGSCxiyTsqOlFdau8dmHzrqo1y-5yS_Fhv_q9e9g0MWW3-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133025284</pqid></control><display><type>article</type><title>Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Ruixin ; Zhan, Faqi ; Wen, Guochang ; Wang, Bing ; Qi, Jiahao ; Liu, Yisi ; Feng, Chenchen ; La, Peiqing</creator><creatorcontrib>Li, Ruixin ; Zhan, Faqi ; Wen, Guochang ; Wang, Bing ; Qi, Jiahao ; Liu, Yisi ; Feng, Chenchen ; La, Peiqing</creatorcontrib><description>In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptimal. This study uses the hydrothermal–electrodeposition–dip coating–calcination method to prepare a microcrystalline WO3 photoanode thin film as the substrate material and combines it with nanocrystalline BiVO4 to form a micro–nano-structured heterojunction photoanode to enhance the intrinsic and surface/interface charge transport properties of the photoanode. Under the condition of 1.23 V vs. RHE, the photoelectric current density reaches 1.09 mA cm−2, which is twice that of WO3. Furthermore, by using a simple impregnation–mineralization method to load the amorphous FeOOH catalyst, a noncrystalline–crystalline composite structure is formed to increase the number of active sites on the surface and reduce the overpotential of water oxidation, lowering the onset potential from 0.8 V to 0.6 V (vs. RHE). The photoelectric current density is further increased to 2.04 mA cm−2 (at 1.23 V vs. RHE). The micro–nano-structure and noncrystalline–crystalline composite structure proposed in this study will provide valuable insights for the design and synthesis of high-efficiency photoelectrocatalysts.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal14110828</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bismuth oxides ; Charge transport ; Composite materials ; Composite structures ; Crystal lattices ; Crystal structure ; Crystallinity ; Current density ; Efficiency ; Heterojunctions ; Immersion coating ; Morphology ; Nanoparticles ; Oxidation ; Photoanodes ; Photoelectricity ; Reaction kinetics ; Spectrum analysis ; Synthesis ; Thin films ; Transport properties ; Vanadates ; Water splitting</subject><ispartof>Catalysts, 2024-11, Vol.14 (11), p.828</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c151t-79454eb88019de1207555388b5a42299d5630f75fa5918658fab14e50ae4f66d3</cites><orcidid>0000-0003-1836-5211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Ruixin</creatorcontrib><creatorcontrib>Zhan, Faqi</creatorcontrib><creatorcontrib>Wen, Guochang</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Qi, Jiahao</creatorcontrib><creatorcontrib>Liu, Yisi</creatorcontrib><creatorcontrib>Feng, Chenchen</creatorcontrib><creatorcontrib>La, Peiqing</creatorcontrib><title>Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance</title><title>Catalysts</title><description>In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptimal. This study uses the hydrothermal–electrodeposition–dip coating–calcination method to prepare a microcrystalline WO3 photoanode thin film as the substrate material and combines it with nanocrystalline BiVO4 to form a micro–nano-structured heterojunction photoanode to enhance the intrinsic and surface/interface charge transport properties of the photoanode. Under the condition of 1.23 V vs. RHE, the photoelectric current density reaches 1.09 mA cm−2, which is twice that of WO3. Furthermore, by using a simple impregnation–mineralization method to load the amorphous FeOOH catalyst, a noncrystalline–crystalline composite structure is formed to increase the number of active sites on the surface and reduce the overpotential of water oxidation, lowering the onset potential from 0.8 V to 0.6 V (vs. RHE). The photoelectric current density is further increased to 2.04 mA cm−2 (at 1.23 V vs. RHE). The micro–nano-structure and noncrystalline–crystalline composite structure proposed in this study will provide valuable insights for the design and synthesis of high-efficiency photoelectrocatalysts.</description><subject>Bismuth oxides</subject><subject>Charge transport</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Current density</subject><subject>Efficiency</subject><subject>Heterojunctions</subject><subject>Immersion coating</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Photoanodes</subject><subject>Photoelectricity</subject><subject>Reaction kinetics</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Transport properties</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkM1OwzAQhC0EElXpkbslzqF2bKfOEaqWIhVSqfwcI9dZK6nSuNiOqt54h74hT0JKOcBedqX9NKMZhK4puWUsJUOtgqopp5TIWJ6hXkxGLOKM8_M_9yUaeL8m3aSUSSp6aDdVuqoBL_dNKMFXHluDFX6qtLNfn4dn1dhoGVyrQ-ugwFPIstnwvnrL-PA9Y3hR2mA7pgC8q0KJJ02pGt2BPw-oQQdndQmbSqsaL8AZ6zZH4gpdGFV7GPzuPnqdTl7Gs2iePTyO7-aRpoKGaJRywWElJaFpAbQLIoRgUq6E4nGcpoVIGDEjYZRIqUyENGpFOQiigJskKVgf3Zx0t85-tOBDvratazrLnFHGSCxiyTsqOlFdau8dmHzrqo1y-5yS_Fhv_q9e9g0MWW3-</recordid><startdate>20241117</startdate><enddate>20241117</enddate><creator>Li, Ruixin</creator><creator>Zhan, Faqi</creator><creator>Wen, Guochang</creator><creator>Wang, Bing</creator><creator>Qi, Jiahao</creator><creator>Liu, Yisi</creator><creator>Feng, Chenchen</creator><creator>La, Peiqing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1836-5211</orcidid></search><sort><creationdate>20241117</creationdate><title>Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance</title><author>Li, Ruixin ; Zhan, Faqi ; Wen, Guochang ; Wang, Bing ; Qi, Jiahao ; Liu, Yisi ; Feng, Chenchen ; La, Peiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c151t-79454eb88019de1207555388b5a42299d5630f75fa5918658fab14e50ae4f66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bismuth oxides</topic><topic>Charge transport</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Current density</topic><topic>Efficiency</topic><topic>Heterojunctions</topic><topic>Immersion coating</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Photoanodes</topic><topic>Photoelectricity</topic><topic>Reaction kinetics</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Transport properties</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruixin</creatorcontrib><creatorcontrib>Zhan, Faqi</creatorcontrib><creatorcontrib>Wen, Guochang</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Qi, Jiahao</creatorcontrib><creatorcontrib>Liu, Yisi</creatorcontrib><creatorcontrib>Feng, Chenchen</creatorcontrib><creatorcontrib>La, Peiqing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruixin</au><au>Zhan, Faqi</au><au>Wen, Guochang</au><au>Wang, Bing</au><au>Qi, Jiahao</au><au>Liu, Yisi</au><au>Feng, Chenchen</au><au>La, Peiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance</atitle><jtitle>Catalysts</jtitle><date>2024-11-17</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>828</spage><pages>828-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptimal. This study uses the hydrothermal–electrodeposition–dip coating–calcination method to prepare a microcrystalline WO3 photoanode thin film as the substrate material and combines it with nanocrystalline BiVO4 to form a micro–nano-structured heterojunction photoanode to enhance the intrinsic and surface/interface charge transport properties of the photoanode. Under the condition of 1.23 V vs. RHE, the photoelectric current density reaches 1.09 mA cm−2, which is twice that of WO3. Furthermore, by using a simple impregnation–mineralization method to load the amorphous FeOOH catalyst, a noncrystalline–crystalline composite structure is formed to increase the number of active sites on the surface and reduce the overpotential of water oxidation, lowering the onset potential from 0.8 V to 0.6 V (vs. RHE). The photoelectric current density is further increased to 2.04 mA cm−2 (at 1.23 V vs. RHE). The micro–nano-structure and noncrystalline–crystalline composite structure proposed in this study will provide valuable insights for the design and synthesis of high-efficiency photoelectrocatalysts.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal14110828</doi><orcidid>https://orcid.org/0000-0003-1836-5211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2024-11, Vol.14 (11), p.828
issn 2073-4344
2073-4344
language eng
recordid cdi_proquest_journals_3133025284
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Bismuth oxides
Charge transport
Composite materials
Composite structures
Crystal lattices
Crystal structure
Crystallinity
Current density
Efficiency
Heterojunctions
Immersion coating
Morphology
Nanoparticles
Oxidation
Photoanodes
Photoelectricity
Reaction kinetics
Spectrum analysis
Synthesis
Thin films
Transport properties
Vanadates
Water splitting
title Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Synthesis%20of%20a%20Micro%E2%80%93Nano-Structured%20FeOOH/BiVO4/WO3%20Photoanode%20with%20Enhanced%20Photoelectrochemical%20Performance&rft.jtitle=Catalysts&rft.au=Li,%20Ruixin&rft.date=2024-11-17&rft.volume=14&rft.issue=11&rft.spage=828&rft.pages=828-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal14110828&rft_dat=%3Cproquest_cross%3E3133025284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133025284&rft_id=info:pmid/&rfr_iscdi=true