MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects

PCBs (printed circuit boards) are the core components of modern electronic devices, and inspecting them for defects will have a direct impact on the performance, reliability and cost of the product. However, the performance of current detection algorithms in identifying minor PCB defects (e.g., mous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-11, Vol.13 (22), p.4453
Hauptverfasser: Peng, Jinmin, Fan, Weipeng, Lan, Song, Wang, Dingran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 4453
container_title Electronics (Basel)
container_volume 13
creator Peng, Jinmin
Fan, Weipeng
Lan, Song
Wang, Dingran
description PCBs (printed circuit boards) are the core components of modern electronic devices, and inspecting them for defects will have a direct impact on the performance, reliability and cost of the product. However, the performance of current detection algorithms in identifying minor PCB defects (e.g., mouse bite and spur) still requires improvement. This paper presents the MDD-DETR algorithm for detecting minor defects in PCBs. The backbone network, MDDNet, is used to efficiently extract features while significantly reducing the number of parameters. Simultaneously, the HiLo attention mechanism captures both high- and low-frequency features, transmitting a broader range of gradient information to the neck. Additionally, the proposed SOEP neck network effectively fuses scale features, particularly those rich in small targets, while INM-IoU loss function optimization enables more effective distinction between defects and background, further improving detection accuracy. Experimental results on the PCB_DATASET show that MDD-DETR achieves a 99.3% mAP, outperforming RT-DETR by 2.0% and reducing parameters by 32.3%, thus effectively addressing the challenges of detecting minor PCB defects.
doi_str_mv 10.3390/electronics13224453
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133015486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818202640</galeid><sourcerecordid>A818202640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-df3bb021e00497bad695fb8be4c699683dc604e3858d027cf028fcd6158ffcfa3</originalsourceid><addsrcrecordid>eNptUNtKAzEQDaJgqf0CXwI-b81t08S32q0XaPFCfV52c2lTtpuapIh_b0p98MEZmBlmzjkDB4BrjMaUSnRrOqNS8L1TEVNCGCvpGRgQNJGFJJKc_5kvwSjGLcohMRUUDcDbsqqKar56v4MLt96kL3OssDIpizrfw2m39sGlzQ5aH-BrcH0yGs5cUAeX4L1vgoZL1-dbZWzmxCtwYZsumtFvH4KPh_lq9lQsXh6fZ9NFobDkqdCWti0i2CDE5KRtNJelbUVrmOJSckG14ogZKkqhEZkoi4iwSnNcCmuVbegQ3Jx098F_HkxM9dYfQp9f1hRTinDJBM-o8Qm1bjpTu976FBqVU5udU7431uX9VGBBEOEMZQI9EVTwMQZj631wuyZ81xjVR7_rf_ymP6pndVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133015486</pqid></control><display><type>article</type><title>MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Peng, Jinmin ; Fan, Weipeng ; Lan, Song ; Wang, Dingran</creator><creatorcontrib>Peng, Jinmin ; Fan, Weipeng ; Lan, Song ; Wang, Dingran</creatorcontrib><description>PCBs (printed circuit boards) are the core components of modern electronic devices, and inspecting them for defects will have a direct impact on the performance, reliability and cost of the product. However, the performance of current detection algorithms in identifying minor PCB defects (e.g., mouse bite and spur) still requires improvement. This paper presents the MDD-DETR algorithm for detecting minor defects in PCBs. The backbone network, MDDNet, is used to efficiently extract features while significantly reducing the number of parameters. Simultaneously, the HiLo attention mechanism captures both high- and low-frequency features, transmitting a broader range of gradient information to the neck. Additionally, the proposed SOEP neck network effectively fuses scale features, particularly those rich in small targets, while INM-IoU loss function optimization enables more effective distinction between defects and background, further improving detection accuracy. Experimental results on the PCB_DATASET show that MDD-DETR achieves a 99.3% mAP, outperforming RT-DETR by 2.0% and reducing parameters by 32.3%, thus effectively addressing the challenges of detecting minor PCB defects.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13224453</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Circuit boards ; Circuit printing ; Component reliability ; Deep learning ; Defects ; Efficiency ; Feature extraction ; Machine learning ; Manufacturing ; Neural networks ; Parameter identification ; Printed circuit boards ; Printed circuits ; Semantics ; Target detection ; Telecommunication systems</subject><ispartof>Electronics (Basel), 2024-11, Vol.13 (22), p.4453</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-df3bb021e00497bad695fb8be4c699683dc604e3858d027cf028fcd6158ffcfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Jinmin</creatorcontrib><creatorcontrib>Fan, Weipeng</creatorcontrib><creatorcontrib>Lan, Song</creatorcontrib><creatorcontrib>Wang, Dingran</creatorcontrib><title>MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects</title><title>Electronics (Basel)</title><description>PCBs (printed circuit boards) are the core components of modern electronic devices, and inspecting them for defects will have a direct impact on the performance, reliability and cost of the product. However, the performance of current detection algorithms in identifying minor PCB defects (e.g., mouse bite and spur) still requires improvement. This paper presents the MDD-DETR algorithm for detecting minor defects in PCBs. The backbone network, MDDNet, is used to efficiently extract features while significantly reducing the number of parameters. Simultaneously, the HiLo attention mechanism captures both high- and low-frequency features, transmitting a broader range of gradient information to the neck. Additionally, the proposed SOEP neck network effectively fuses scale features, particularly those rich in small targets, while INM-IoU loss function optimization enables more effective distinction between defects and background, further improving detection accuracy. Experimental results on the PCB_DATASET show that MDD-DETR achieves a 99.3% mAP, outperforming RT-DETR by 2.0% and reducing parameters by 32.3%, thus effectively addressing the challenges of detecting minor PCB defects.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Circuit boards</subject><subject>Circuit printing</subject><subject>Component reliability</subject><subject>Deep learning</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Printed circuit boards</subject><subject>Printed circuits</subject><subject>Semantics</subject><subject>Target detection</subject><subject>Telecommunication systems</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUNtKAzEQDaJgqf0CXwI-b81t08S32q0XaPFCfV52c2lTtpuapIh_b0p98MEZmBlmzjkDB4BrjMaUSnRrOqNS8L1TEVNCGCvpGRgQNJGFJJKc_5kvwSjGLcohMRUUDcDbsqqKar56v4MLt96kL3OssDIpizrfw2m39sGlzQ5aH-BrcH0yGs5cUAeX4L1vgoZL1-dbZWzmxCtwYZsumtFvH4KPh_lq9lQsXh6fZ9NFobDkqdCWti0i2CDE5KRtNJelbUVrmOJSckG14ogZKkqhEZkoi4iwSnNcCmuVbegQ3Jx098F_HkxM9dYfQp9f1hRTinDJBM-o8Qm1bjpTu976FBqVU5udU7431uX9VGBBEOEMZQI9EVTwMQZj631wuyZ81xjVR7_rf_ymP6pndVg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Peng, Jinmin</creator><creator>Fan, Weipeng</creator><creator>Lan, Song</creator><creator>Wang, Dingran</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241101</creationdate><title>MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects</title><author>Peng, Jinmin ; Fan, Weipeng ; Lan, Song ; Wang, Dingran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-df3bb021e00497bad695fb8be4c699683dc604e3858d027cf028fcd6158ffcfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Circuit boards</topic><topic>Circuit printing</topic><topic>Component reliability</topic><topic>Deep learning</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Printed circuit boards</topic><topic>Printed circuits</topic><topic>Semantics</topic><topic>Target detection</topic><topic>Telecommunication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jinmin</creatorcontrib><creatorcontrib>Fan, Weipeng</creatorcontrib><creatorcontrib>Lan, Song</creatorcontrib><creatorcontrib>Wang, Dingran</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jinmin</au><au>Fan, Weipeng</au><au>Lan, Song</au><au>Wang, Dingran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>13</volume><issue>22</issue><spage>4453</spage><pages>4453-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>PCBs (printed circuit boards) are the core components of modern electronic devices, and inspecting them for defects will have a direct impact on the performance, reliability and cost of the product. However, the performance of current detection algorithms in identifying minor PCB defects (e.g., mouse bite and spur) still requires improvement. This paper presents the MDD-DETR algorithm for detecting minor defects in PCBs. The backbone network, MDDNet, is used to efficiently extract features while significantly reducing the number of parameters. Simultaneously, the HiLo attention mechanism captures both high- and low-frequency features, transmitting a broader range of gradient information to the neck. Additionally, the proposed SOEP neck network effectively fuses scale features, particularly those rich in small targets, while INM-IoU loss function optimization enables more effective distinction between defects and background, further improving detection accuracy. Experimental results on the PCB_DATASET show that MDD-DETR achieves a 99.3% mAP, outperforming RT-DETR by 2.0% and reducing parameters by 32.3%, thus effectively addressing the challenges of detecting minor PCB defects.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13224453</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-11, Vol.13 (22), p.4453
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3133015486
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Circuit boards
Circuit printing
Component reliability
Deep learning
Defects
Efficiency
Feature extraction
Machine learning
Manufacturing
Neural networks
Parameter identification
Printed circuit boards
Printed circuits
Semantics
Target detection
Telecommunication systems
title MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDD-DETR:%20Lightweight%20Detection%20Algorithm%20for%20Printed%20Circuit%20Board%20Minor%20Defects&rft.jtitle=Electronics%20(Basel)&rft.au=Peng,%20Jinmin&rft.date=2024-11-01&rft.volume=13&rft.issue=22&rft.spage=4453&rft.pages=4453-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13224453&rft_dat=%3Cgale_proqu%3EA818202640%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133015486&rft_id=info:pmid/&rft_galeid=A818202640&rfr_iscdi=true