A Multi-Level Embedding Framework for Decoding Sarcasm Using Context, Emotion, and Sentiment Feature

Sarcasm detection in text poses significant challenges for traditional sentiment analysis, as it often requires an understanding of context, word meanings, and emotional undertones. For example, in the sentence “I totally love working on Christmas holiday”, detecting sarcasm depends on capturing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-11, Vol.13 (22), p.4429
Hauptverfasser: Najafabadi, Maryam Khanian, Ko, Thoon Zar Chi, Chaeikar, Saman Shojae, Shabani, Nasrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 4429
container_title Electronics (Basel)
container_volume 13
creator Najafabadi, Maryam Khanian
Ko, Thoon Zar Chi
Chaeikar, Saman Shojae
Shabani, Nasrin
description Sarcasm detection in text poses significant challenges for traditional sentiment analysis, as it often requires an understanding of context, word meanings, and emotional undertones. For example, in the sentence “I totally love working on Christmas holiday”, detecting sarcasm depends on capturing the contrast between affective words and their context. Existing methods often focus on single-embedding levels, such as word-level or affective-level, neglecting the importance of multi-level context. In this paper, we propose SAWE (Sentence, Affect, and Word Embeddings), a framework that combines sentence-level, affect-level, and context-dependent word embeddings to improve sarcasm detection. We use pre-trained transformer models SBERT and RoBERTa, enhanced with a bidirectional GRU and self-attention, alongside SenticNet to extract affective words. The combined embeddings are processed through a CNN and classified using a multilayer perceptron (MLP). SAWE is evaluated on two benchmark datasets, Sarcasm Corpus V2 (SV2) and Self-Annotated Reddit Corpus 2.0 (SARC 2.0), outperforming previous methods, particularly on long texts, with a 4.2% improvement on F1-Score for SV2. Our results emphasize the importance of multi-level embeddings and contextual information in detecting sarcasm, demonstrating a new direction for future research.
doi_str_mv 10.3390/electronics13224429
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133009571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818202617</galeid><sourcerecordid>A818202617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-3f4be40ac6008131fb6422d7a4e79089d70913978ca4b6f777d4369fb644d23f3</originalsourceid><addsrcrecordid>eNptUUtLAzEQXkRB0f4CLwGv3ZqXm82x1FaFiofqeUmTiUR3k5qkPv69qfXgwRmYF983D6aqzgmeMCbxJfSgcwze6UQYpZxTeVCdUCxkLamkh3_i42qU0gsuIglrGT6pzBTdb_vs6iW8Q4_mwxqMcf4ZLaIa4CPEV2RDRNegw095paJWaUBPaZfNgs_wmceFF7ILfoyUN2gFPruhGLQAlbcRzqojq_oEo19_Wj0t5o-z23r5cHM3my5rTWSTa2b5GjhWusG4JYzYdcMpNUJxEBK30ojd2lK0WvF1Y4UQhrNG7mDcUGbZaXWx77uJ4W0LKXcvYRt9Gdkxwli5-kqQgprsUc-qh855G3JUuqiBwengwbpSn7akpZg2RBQC2xN0DClFsN0mukHFr47gbveC7p8XsG98EntY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133009571</pqid></control><display><type>article</type><title>A Multi-Level Embedding Framework for Decoding Sarcasm Using Context, Emotion, and Sentiment Feature</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Najafabadi, Maryam Khanian ; Ko, Thoon Zar Chi ; Chaeikar, Saman Shojae ; Shabani, Nasrin</creator><creatorcontrib>Najafabadi, Maryam Khanian ; Ko, Thoon Zar Chi ; Chaeikar, Saman Shojae ; Shabani, Nasrin</creatorcontrib><description>Sarcasm detection in text poses significant challenges for traditional sentiment analysis, as it often requires an understanding of context, word meanings, and emotional undertones. For example, in the sentence “I totally love working on Christmas holiday”, detecting sarcasm depends on capturing the contrast between affective words and their context. Existing methods often focus on single-embedding levels, such as word-level or affective-level, neglecting the importance of multi-level context. In this paper, we propose SAWE (Sentence, Affect, and Word Embeddings), a framework that combines sentence-level, affect-level, and context-dependent word embeddings to improve sarcasm detection. We use pre-trained transformer models SBERT and RoBERTa, enhanced with a bidirectional GRU and self-attention, alongside SenticNet to extract affective words. The combined embeddings are processed through a CNN and classified using a multilayer perceptron (MLP). SAWE is evaluated on two benchmark datasets, Sarcasm Corpus V2 (SV2) and Self-Annotated Reddit Corpus 2.0 (SARC 2.0), outperforming previous methods, particularly on long texts, with a 4.2% improvement on F1-Score for SV2. Our results emphasize the importance of multi-level embeddings and contextual information in detecting sarcasm, demonstrating a new direction for future research.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13224429</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Classification ; Computational linguistics ; Context ; Embedding ; Language processing ; Multilayer perceptrons ; Natural language interfaces ; Popularity ; Research methodology ; Semantics ; Sentences ; Sentiment analysis ; Social networks ; Words (language)</subject><ispartof>Electronics (Basel), 2024-11, Vol.13 (22), p.4429</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-3f4be40ac6008131fb6422d7a4e79089d70913978ca4b6f777d4369fb644d23f3</cites><orcidid>0000-0002-2958-6901 ; 0000-0002-5071-7515 ; 0000-0001-7283-5101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Najafabadi, Maryam Khanian</creatorcontrib><creatorcontrib>Ko, Thoon Zar Chi</creatorcontrib><creatorcontrib>Chaeikar, Saman Shojae</creatorcontrib><creatorcontrib>Shabani, Nasrin</creatorcontrib><title>A Multi-Level Embedding Framework for Decoding Sarcasm Using Context, Emotion, and Sentiment Feature</title><title>Electronics (Basel)</title><description>Sarcasm detection in text poses significant challenges for traditional sentiment analysis, as it often requires an understanding of context, word meanings, and emotional undertones. For example, in the sentence “I totally love working on Christmas holiday”, detecting sarcasm depends on capturing the contrast between affective words and their context. Existing methods often focus on single-embedding levels, such as word-level or affective-level, neglecting the importance of multi-level context. In this paper, we propose SAWE (Sentence, Affect, and Word Embeddings), a framework that combines sentence-level, affect-level, and context-dependent word embeddings to improve sarcasm detection. We use pre-trained transformer models SBERT and RoBERTa, enhanced with a bidirectional GRU and self-attention, alongside SenticNet to extract affective words. The combined embeddings are processed through a CNN and classified using a multilayer perceptron (MLP). SAWE is evaluated on two benchmark datasets, Sarcasm Corpus V2 (SV2) and Self-Annotated Reddit Corpus 2.0 (SARC 2.0), outperforming previous methods, particularly on long texts, with a 4.2% improvement on F1-Score for SV2. Our results emphasize the importance of multi-level embeddings and contextual information in detecting sarcasm, demonstrating a new direction for future research.</description><subject>Analysis</subject><subject>Classification</subject><subject>Computational linguistics</subject><subject>Context</subject><subject>Embedding</subject><subject>Language processing</subject><subject>Multilayer perceptrons</subject><subject>Natural language interfaces</subject><subject>Popularity</subject><subject>Research methodology</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Words (language)</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUUtLAzEQXkRB0f4CLwGv3ZqXm82x1FaFiofqeUmTiUR3k5qkPv69qfXgwRmYF983D6aqzgmeMCbxJfSgcwze6UQYpZxTeVCdUCxkLamkh3_i42qU0gsuIglrGT6pzBTdb_vs6iW8Q4_mwxqMcf4ZLaIa4CPEV2RDRNegw095paJWaUBPaZfNgs_wmceFF7ILfoyUN2gFPruhGLQAlbcRzqojq_oEo19_Wj0t5o-z23r5cHM3my5rTWSTa2b5GjhWusG4JYzYdcMpNUJxEBK30ojd2lK0WvF1Y4UQhrNG7mDcUGbZaXWx77uJ4W0LKXcvYRt9Gdkxwli5-kqQgprsUc-qh855G3JUuqiBwengwbpSn7akpZg2RBQC2xN0DClFsN0mukHFr47gbveC7p8XsG98EntY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Najafabadi, Maryam Khanian</creator><creator>Ko, Thoon Zar Chi</creator><creator>Chaeikar, Saman Shojae</creator><creator>Shabani, Nasrin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2958-6901</orcidid><orcidid>https://orcid.org/0000-0002-5071-7515</orcidid><orcidid>https://orcid.org/0000-0001-7283-5101</orcidid></search><sort><creationdate>20241101</creationdate><title>A Multi-Level Embedding Framework for Decoding Sarcasm Using Context, Emotion, and Sentiment Feature</title><author>Najafabadi, Maryam Khanian ; Ko, Thoon Zar Chi ; Chaeikar, Saman Shojae ; Shabani, Nasrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-3f4be40ac6008131fb6422d7a4e79089d70913978ca4b6f777d4369fb644d23f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Classification</topic><topic>Computational linguistics</topic><topic>Context</topic><topic>Embedding</topic><topic>Language processing</topic><topic>Multilayer perceptrons</topic><topic>Natural language interfaces</topic><topic>Popularity</topic><topic>Research methodology</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najafabadi, Maryam Khanian</creatorcontrib><creatorcontrib>Ko, Thoon Zar Chi</creatorcontrib><creatorcontrib>Chaeikar, Saman Shojae</creatorcontrib><creatorcontrib>Shabani, Nasrin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najafabadi, Maryam Khanian</au><au>Ko, Thoon Zar Chi</au><au>Chaeikar, Saman Shojae</au><au>Shabani, Nasrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Level Embedding Framework for Decoding Sarcasm Using Context, Emotion, and Sentiment Feature</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>13</volume><issue>22</issue><spage>4429</spage><pages>4429-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Sarcasm detection in text poses significant challenges for traditional sentiment analysis, as it often requires an understanding of context, word meanings, and emotional undertones. For example, in the sentence “I totally love working on Christmas holiday”, detecting sarcasm depends on capturing the contrast between affective words and their context. Existing methods often focus on single-embedding levels, such as word-level or affective-level, neglecting the importance of multi-level context. In this paper, we propose SAWE (Sentence, Affect, and Word Embeddings), a framework that combines sentence-level, affect-level, and context-dependent word embeddings to improve sarcasm detection. We use pre-trained transformer models SBERT and RoBERTa, enhanced with a bidirectional GRU and self-attention, alongside SenticNet to extract affective words. The combined embeddings are processed through a CNN and classified using a multilayer perceptron (MLP). SAWE is evaluated on two benchmark datasets, Sarcasm Corpus V2 (SV2) and Self-Annotated Reddit Corpus 2.0 (SARC 2.0), outperforming previous methods, particularly on long texts, with a 4.2% improvement on F1-Score for SV2. Our results emphasize the importance of multi-level embeddings and contextual information in detecting sarcasm, demonstrating a new direction for future research.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13224429</doi><orcidid>https://orcid.org/0000-0002-2958-6901</orcidid><orcidid>https://orcid.org/0000-0002-5071-7515</orcidid><orcidid>https://orcid.org/0000-0001-7283-5101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-11, Vol.13 (22), p.4429
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3133009571
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis
Classification
Computational linguistics
Context
Embedding
Language processing
Multilayer perceptrons
Natural language interfaces
Popularity
Research methodology
Semantics
Sentences
Sentiment analysis
Social networks
Words (language)
title A Multi-Level Embedding Framework for Decoding Sarcasm Using Context, Emotion, and Sentiment Feature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Level%20Embedding%20Framework%20for%20Decoding%20Sarcasm%20Using%20Context,%20Emotion,%20and%20Sentiment%20Feature&rft.jtitle=Electronics%20(Basel)&rft.au=Najafabadi,%20Maryam%20Khanian&rft.date=2024-11-01&rft.volume=13&rft.issue=22&rft.spage=4429&rft.pages=4429-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13224429&rft_dat=%3Cgale_proqu%3EA818202617%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133009571&rft_id=info:pmid/&rft_galeid=A818202617&rfr_iscdi=true