Structural and optical study of chitosan–graphene oxide composite through hydrothermal route

Chitosan (CS), a semi-crystalline biomolecule, has gained widespread attention due to its great synthesis flexibility and biological compatibility. In this study, chitosan was synthesized from chitin, a homopolymer of N-acetyl-D-glucosamine linked by β–(1→4) bonds extracted from shrimp shell. Crysta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-11, Vol.14 (11), p.115320-115320-9
Hauptverfasser: Paul, Tonmoy, Ifat-Al-Karim, Md, Nahid, Farzana, Haque, Md Mahbubul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115320-9
container_issue 11
container_start_page 115320
container_title AIP advances
container_volume 14
creator Paul, Tonmoy
Ifat-Al-Karim, Md
Nahid, Farzana
Haque, Md Mahbubul
description Chitosan (CS), a semi-crystalline biomolecule, has gained widespread attention due to its great synthesis flexibility and biological compatibility. In this study, chitosan was synthesized from chitin, a homopolymer of N-acetyl-D-glucosamine linked by β–(1→4) bonds extracted from shrimp shell. Crystallinity of chitosan was always an issue while applying it in various applications. Graphene Oxide (GO) can be a very capable substitute for enhancing the crystallinity of chitosan due to its mechanical, thermal, optical, biomedical, and electronic properties. In this study, a chitosan–graphene oxide composite was synthesized by following the hydrothermal method. The characterization of chitosan–graphene oxide composite performed by different processes: x-ray diffraction revealed that the produced chitosan–graphene oxide composite has improved crystalline characteristics, with a smaller crystallite size of 6.2 nm when compared to GO and CS. Fourier transform infrared spectroscopy confirmed the presence of functional groups in GO, CS, and GO–CS. The Raman spectrum predicted the increased disorders originated from sp2 carbon hexagonal networks with strong covalent bonds. The relative quality and successful preparation of the GO–CS composite were evaluated and confirmed by ultraviolet spectroscopy. The scanning electron microscopy (SEM) analysis pictured the morphology of the GO-CS composite. The novel aspect of this study was the incorporation of graphene oxide in order to boost the crystal structure of chitosan derived from raw shrimp shells.
doi_str_mv 10.1063/5.0231060
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3133005387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12d959bd901447e6ad386d496d659980</doaj_id><sourcerecordid>3133005387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-f502451dac48c982b9b818a5ec7ec2e9ce0a50f10fbad59a6988d86be16485573</originalsourceid><addsrcrecordid>eNp9UctKAzEUHUTBUrvwDwZcKUzNY5ImSyk-CgUX6taQSTKdlHYyJhmwO__BP_RLTJ0irrybezgczrmXk2XnEEwhoPiaTAHCCYGjbIQgYQVGiB7_wafZJIQ1SFNyCFg5yl6fou9V7L3c5LLVueuiVQmH2Otd7upcNTa6INuvj8-Vl11jWpO7d6tNrty2c8FGk8fGu37V5M1Oexcb47fJIVHRnGUntdwEMznscfZyd_s8fyiWj_eL-c2yUIjhWNQEoJJALVXJFGeo4hWDTBKjZkYhw5UBkoAagrqSmnBJOWOa0cpAWjJCZnicLQZf7eRadN5upd8JJ634IZxfCenTZxsjINKc8EpzAMtyZqjUmFFdcqop4ZyB5HUxeHXevfUmRLF2vW_T-QJDjAEgmO0TLweV8i4Eb-rfVAjEvg1BxKGNpL0atEHZKKN17T_ib0L6ilg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133005387</pqid></control><display><type>article</type><title>Structural and optical study of chitosan–graphene oxide composite through hydrothermal route</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Paul, Tonmoy ; Ifat-Al-Karim, Md ; Nahid, Farzana ; Haque, Md Mahbubul</creator><creatorcontrib>Paul, Tonmoy ; Ifat-Al-Karim, Md ; Nahid, Farzana ; Haque, Md Mahbubul</creatorcontrib><description>Chitosan (CS), a semi-crystalline biomolecule, has gained widespread attention due to its great synthesis flexibility and biological compatibility. In this study, chitosan was synthesized from chitin, a homopolymer of N-acetyl-D-glucosamine linked by β–(1→4) bonds extracted from shrimp shell. Crystallinity of chitosan was always an issue while applying it in various applications. Graphene Oxide (GO) can be a very capable substitute for enhancing the crystallinity of chitosan due to its mechanical, thermal, optical, biomedical, and electronic properties. In this study, a chitosan–graphene oxide composite was synthesized by following the hydrothermal method. The characterization of chitosan–graphene oxide composite performed by different processes: x-ray diffraction revealed that the produced chitosan–graphene oxide composite has improved crystalline characteristics, with a smaller crystallite size of 6.2 nm when compared to GO and CS. Fourier transform infrared spectroscopy confirmed the presence of functional groups in GO, CS, and GO–CS. The Raman spectrum predicted the increased disorders originated from sp2 carbon hexagonal networks with strong covalent bonds. The relative quality and successful preparation of the GO–CS composite were evaluated and confirmed by ultraviolet spectroscopy. The scanning electron microscopy (SEM) analysis pictured the morphology of the GO-CS composite. The novel aspect of this study was the incorporation of graphene oxide in order to boost the crystal structure of chitosan derived from raw shrimp shells.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0231060</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biocompatibility ; Biomolecules ; Bonding strength ; Chitin ; Chitosan ; Covalent bonds ; Crystal structure ; Crystallinity ; Crystallites ; Fourier transforms ; Functional groups ; Graphene ; Hydrothermal crystal growth ; Infrared analysis ; Infrared spectroscopy ; Optical properties ; Shrimps ; Spectrum analysis ; Synthesis</subject><ispartof>AIP advances, 2024-11, Vol.14 (11), p.115320-115320-9</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-f502451dac48c982b9b818a5ec7ec2e9ce0a50f10fbad59a6988d86be16485573</cites><orcidid>0000-0001-9160-8457 ; 0000-0001-5482-8100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,27923,27924</link.rule.ids></links><search><creatorcontrib>Paul, Tonmoy</creatorcontrib><creatorcontrib>Ifat-Al-Karim, Md</creatorcontrib><creatorcontrib>Nahid, Farzana</creatorcontrib><creatorcontrib>Haque, Md Mahbubul</creatorcontrib><title>Structural and optical study of chitosan–graphene oxide composite through hydrothermal route</title><title>AIP advances</title><description>Chitosan (CS), a semi-crystalline biomolecule, has gained widespread attention due to its great synthesis flexibility and biological compatibility. In this study, chitosan was synthesized from chitin, a homopolymer of N-acetyl-D-glucosamine linked by β–(1→4) bonds extracted from shrimp shell. Crystallinity of chitosan was always an issue while applying it in various applications. Graphene Oxide (GO) can be a very capable substitute for enhancing the crystallinity of chitosan due to its mechanical, thermal, optical, biomedical, and electronic properties. In this study, a chitosan–graphene oxide composite was synthesized by following the hydrothermal method. The characterization of chitosan–graphene oxide composite performed by different processes: x-ray diffraction revealed that the produced chitosan–graphene oxide composite has improved crystalline characteristics, with a smaller crystallite size of 6.2 nm when compared to GO and CS. Fourier transform infrared spectroscopy confirmed the presence of functional groups in GO, CS, and GO–CS. The Raman spectrum predicted the increased disorders originated from sp2 carbon hexagonal networks with strong covalent bonds. The relative quality and successful preparation of the GO–CS composite were evaluated and confirmed by ultraviolet spectroscopy. The scanning electron microscopy (SEM) analysis pictured the morphology of the GO-CS composite. The novel aspect of this study was the incorporation of graphene oxide in order to boost the crystal structure of chitosan derived from raw shrimp shells.</description><subject>Biocompatibility</subject><subject>Biomolecules</subject><subject>Bonding strength</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>Covalent bonds</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Hydrothermal crystal growth</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Optical properties</subject><subject>Shrimps</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctKAzEUHUTBUrvwDwZcKUzNY5ImSyk-CgUX6taQSTKdlHYyJhmwO__BP_RLTJ0irrybezgczrmXk2XnEEwhoPiaTAHCCYGjbIQgYQVGiB7_wafZJIQ1SFNyCFg5yl6fou9V7L3c5LLVueuiVQmH2Otd7upcNTa6INuvj8-Vl11jWpO7d6tNrty2c8FGk8fGu37V5M1Oexcb47fJIVHRnGUntdwEMznscfZyd_s8fyiWj_eL-c2yUIjhWNQEoJJALVXJFGeo4hWDTBKjZkYhw5UBkoAagrqSmnBJOWOa0cpAWjJCZnicLQZf7eRadN5upd8JJ634IZxfCenTZxsjINKc8EpzAMtyZqjUmFFdcqop4ZyB5HUxeHXevfUmRLF2vW_T-QJDjAEgmO0TLweV8i4Eb-rfVAjEvg1BxKGNpL0atEHZKKN17T_ib0L6ilg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Paul, Tonmoy</creator><creator>Ifat-Al-Karim, Md</creator><creator>Nahid, Farzana</creator><creator>Haque, Md Mahbubul</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9160-8457</orcidid><orcidid>https://orcid.org/0000-0001-5482-8100</orcidid></search><sort><creationdate>20241101</creationdate><title>Structural and optical study of chitosan–graphene oxide composite through hydrothermal route</title><author>Paul, Tonmoy ; Ifat-Al-Karim, Md ; Nahid, Farzana ; Haque, Md Mahbubul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-f502451dac48c982b9b818a5ec7ec2e9ce0a50f10fbad59a6988d86be16485573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Biomolecules</topic><topic>Bonding strength</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>Covalent bonds</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Hydrothermal crystal growth</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Optical properties</topic><topic>Shrimps</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Tonmoy</creatorcontrib><creatorcontrib>Ifat-Al-Karim, Md</creatorcontrib><creatorcontrib>Nahid, Farzana</creatorcontrib><creatorcontrib>Haque, Md Mahbubul</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Tonmoy</au><au>Ifat-Al-Karim, Md</au><au>Nahid, Farzana</au><au>Haque, Md Mahbubul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and optical study of chitosan–graphene oxide composite through hydrothermal route</atitle><jtitle>AIP advances</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>115320</spage><epage>115320-9</epage><pages>115320-115320-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Chitosan (CS), a semi-crystalline biomolecule, has gained widespread attention due to its great synthesis flexibility and biological compatibility. In this study, chitosan was synthesized from chitin, a homopolymer of N-acetyl-D-glucosamine linked by β–(1→4) bonds extracted from shrimp shell. Crystallinity of chitosan was always an issue while applying it in various applications. Graphene Oxide (GO) can be a very capable substitute for enhancing the crystallinity of chitosan due to its mechanical, thermal, optical, biomedical, and electronic properties. In this study, a chitosan–graphene oxide composite was synthesized by following the hydrothermal method. The characterization of chitosan–graphene oxide composite performed by different processes: x-ray diffraction revealed that the produced chitosan–graphene oxide composite has improved crystalline characteristics, with a smaller crystallite size of 6.2 nm when compared to GO and CS. Fourier transform infrared spectroscopy confirmed the presence of functional groups in GO, CS, and GO–CS. The Raman spectrum predicted the increased disorders originated from sp2 carbon hexagonal networks with strong covalent bonds. The relative quality and successful preparation of the GO–CS composite were evaluated and confirmed by ultraviolet spectroscopy. The scanning electron microscopy (SEM) analysis pictured the morphology of the GO-CS composite. The novel aspect of this study was the incorporation of graphene oxide in order to boost the crystal structure of chitosan derived from raw shrimp shells.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0231060</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9160-8457</orcidid><orcidid>https://orcid.org/0000-0001-5482-8100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-11, Vol.14 (11), p.115320-115320-9
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_3133005387
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Biocompatibility
Biomolecules
Bonding strength
Chitin
Chitosan
Covalent bonds
Crystal structure
Crystallinity
Crystallites
Fourier transforms
Functional groups
Graphene
Hydrothermal crystal growth
Infrared analysis
Infrared spectroscopy
Optical properties
Shrimps
Spectrum analysis
Synthesis
title Structural and optical study of chitosan–graphene oxide composite through hydrothermal route
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20optical%20study%20of%20chitosan%E2%80%93graphene%20oxide%20composite%20through%20hydrothermal%20route&rft.jtitle=AIP%20advances&rft.au=Paul,%20Tonmoy&rft.date=2024-11-01&rft.volume=14&rft.issue=11&rft.spage=115320&rft.epage=115320-9&rft.pages=115320-115320-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0231060&rft_dat=%3Cproquest_doaj_%3E3133005387%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133005387&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_12d959bd901447e6ad386d496d659980&rfr_iscdi=true