Mechanisms of Integration and Release of AgNO3 in Chitosan Films and Their Interaction with Nosocomial Pathogens
Postsurgical infections are an important cause of implant failure, and biomaterials such as Chitosan can be used as an antimicrobial coating to address this important problem. Characterization of silver distribution was performed by several methods, including Electron scanning microscopy (SEM), Indu...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2024-11, Vol.14 (11), p.1453 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1453 |
container_title | Coatings (Basel) |
container_volume | 14 |
creator | Román-Aguirre, Manuel Barraza-Jimenez, Diana Leyva-Porras, César Peinado-Villalobos, Roxana Molina-Jáquez, David Olivas-Espino, Joel Arturo Castillo-González, Alva Rocío Camarillo-Cisneros, Javier Favila-Pérez, María Alejandra Quiñonez-Flores, Celia María Arzate-Quintana, Carlos |
description | Postsurgical infections are an important cause of implant failure, and biomaterials such as Chitosan can be used as an antimicrobial coating to address this important problem. Characterization of silver distribution was performed by several methods, including Electron scanning microscopy (SEM), Inductively coupled plasma (ICP), and Infrared spectrometry (IR). Antimicrobial activity was tested against Candida albicans ATCC 10231, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa BAA-1744 ATCC 109246. The inhibition assays showed that Chitosan films inhibited 68% of C. albicans growth and 23.5% of E. coli growth; the rest of the microorganisms did not have any statistically relevant inhibition. E. coli, P. aeruginosa, and C. albicans were completely inhibited in films with 0.25 mg/mL of AgNO3 and inhibited 82.5% of S. aureus. The mechanism of integration and release of silver in the films was analyzed by the Density Functional Theory (DFT), considering this analysis of geometry optimization as well as infrared spectroscopy. DFT analysis showed that AgNO3 is not trapped by covalence in chitosan, being a more stable system when it is closer to an OH group. Chitosan films functionalized with antimicrobial compounds are a promising antimicrobial coating for use in biomaterials to prevent postsurgical complications. |
doi_str_mv | 10.3390/coatings14111453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132974381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132974381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1051-f513b3d81fb0c0cef290cc0ff0f91c78eb75874b628ee102f00dfd48bcaf8f33</originalsourceid><addsrcrecordid>eNpdkNFLwzAQxoMoOObefQz4XL1r2jV5HMPpYG4iey9pmrQZXTKTDvG_t9t8EO_lDu73fcd9hNwjPDIm4El52VvXRMwQMcvZFRmlUIhkmmF6_We-JZMYdzCUQMZRjMjhTatWOhv3kXpDl67XTRjMvKPS1fRDd1pGfVrNmvWGUevovLW9j9LRhe0G1QnbttqGszhIdRZ_2b6lax-98nsrO_ou-9Y32sU7cmNkF_Xkt4_JdvG8nb8mq83Lcj5bJQohx8TkyCpWczQVKFDapAKUAmPACFQF11WR8yKrpinXGiE1ALWpM14pabhhbEweLraH4D-POvblzh-DGy6WDFkqimz4f6DgQqngYwzalIdg9zJ8lwjlKdnyf7LsB1tdbqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132974381</pqid></control><display><type>article</type><title>Mechanisms of Integration and Release of AgNO3 in Chitosan Films and Their Interaction with Nosocomial Pathogens</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Román-Aguirre, Manuel ; Barraza-Jimenez, Diana ; Leyva-Porras, César ; Peinado-Villalobos, Roxana ; Molina-Jáquez, David ; Olivas-Espino, Joel Arturo ; Castillo-González, Alva Rocío ; Camarillo-Cisneros, Javier ; Favila-Pérez, María Alejandra ; Quiñonez-Flores, Celia María ; Arzate-Quintana, Carlos</creator><creatorcontrib>Román-Aguirre, Manuel ; Barraza-Jimenez, Diana ; Leyva-Porras, César ; Peinado-Villalobos, Roxana ; Molina-Jáquez, David ; Olivas-Espino, Joel Arturo ; Castillo-González, Alva Rocío ; Camarillo-Cisneros, Javier ; Favila-Pérez, María Alejandra ; Quiñonez-Flores, Celia María ; Arzate-Quintana, Carlos</creatorcontrib><description>Postsurgical infections are an important cause of implant failure, and biomaterials such as Chitosan can be used as an antimicrobial coating to address this important problem. Characterization of silver distribution was performed by several methods, including Electron scanning microscopy (SEM), Inductively coupled plasma (ICP), and Infrared spectrometry (IR). Antimicrobial activity was tested against Candida albicans ATCC 10231, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa BAA-1744 ATCC 109246. The inhibition assays showed that Chitosan films inhibited 68% of C. albicans growth and 23.5% of E. coli growth; the rest of the microorganisms did not have any statistically relevant inhibition. E. coli, P. aeruginosa, and C. albicans were completely inhibited in films with 0.25 mg/mL of AgNO3 and inhibited 82.5% of S. aureus. The mechanism of integration and release of silver in the films was analyzed by the Density Functional Theory (DFT), considering this analysis of geometry optimization as well as infrared spectroscopy. DFT analysis showed that AgNO3 is not trapped by covalence in chitosan, being a more stable system when it is closer to an OH group. Chitosan films functionalized with antimicrobial compounds are a promising antimicrobial coating for use in biomaterials to prevent postsurgical complications.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings14111453</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antibiotics ; Antimicrobial agents ; Bacteria ; Biodegradation ; Biomedical materials ; Catheters ; Chitosan ; Crystal structure ; Density functional theory ; E coli ; Glycerol ; Hospitals ; Humidity ; Inductively coupled plasma ; Infrared analysis ; Infrared spectroscopy ; Medical equipment ; Microorganisms ; Nanoparticles ; Nanostructured materials ; Nitrates ; Nosocomial infections ; Pathogens ; Patients ; Physiology ; Polyethylene terephthalate ; Pseudomonas aeruginosa ; Scanning microscopy ; Silver ; Silver nitrate ; Surgical implants</subject><ispartof>Coatings (Basel), 2024-11, Vol.14 (11), p.1453</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1051-f513b3d81fb0c0cef290cc0ff0f91c78eb75874b628ee102f00dfd48bcaf8f33</cites><orcidid>0000-0001-7878-1546 ; 0000-0002-5673-5992 ; 0000-0003-0396-3841 ; 0000-0002-6310-9869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Román-Aguirre, Manuel</creatorcontrib><creatorcontrib>Barraza-Jimenez, Diana</creatorcontrib><creatorcontrib>Leyva-Porras, César</creatorcontrib><creatorcontrib>Peinado-Villalobos, Roxana</creatorcontrib><creatorcontrib>Molina-Jáquez, David</creatorcontrib><creatorcontrib>Olivas-Espino, Joel Arturo</creatorcontrib><creatorcontrib>Castillo-González, Alva Rocío</creatorcontrib><creatorcontrib>Camarillo-Cisneros, Javier</creatorcontrib><creatorcontrib>Favila-Pérez, María Alejandra</creatorcontrib><creatorcontrib>Quiñonez-Flores, Celia María</creatorcontrib><creatorcontrib>Arzate-Quintana, Carlos</creatorcontrib><title>Mechanisms of Integration and Release of AgNO3 in Chitosan Films and Their Interaction with Nosocomial Pathogens</title><title>Coatings (Basel)</title><description>Postsurgical infections are an important cause of implant failure, and biomaterials such as Chitosan can be used as an antimicrobial coating to address this important problem. Characterization of silver distribution was performed by several methods, including Electron scanning microscopy (SEM), Inductively coupled plasma (ICP), and Infrared spectrometry (IR). Antimicrobial activity was tested against Candida albicans ATCC 10231, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa BAA-1744 ATCC 109246. The inhibition assays showed that Chitosan films inhibited 68% of C. albicans growth and 23.5% of E. coli growth; the rest of the microorganisms did not have any statistically relevant inhibition. E. coli, P. aeruginosa, and C. albicans were completely inhibited in films with 0.25 mg/mL of AgNO3 and inhibited 82.5% of S. aureus. The mechanism of integration and release of silver in the films was analyzed by the Density Functional Theory (DFT), considering this analysis of geometry optimization as well as infrared spectroscopy. DFT analysis showed that AgNO3 is not trapped by covalence in chitosan, being a more stable system when it is closer to an OH group. Chitosan films functionalized with antimicrobial compounds are a promising antimicrobial coating for use in biomaterials to prevent postsurgical complications.</description><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Catheters</subject><subject>Chitosan</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>E coli</subject><subject>Glycerol</subject><subject>Hospitals</subject><subject>Humidity</subject><subject>Inductively coupled plasma</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Medical equipment</subject><subject>Microorganisms</subject><subject>Nanoparticles</subject><subject>Nanostructured materials</subject><subject>Nitrates</subject><subject>Nosocomial infections</subject><subject>Pathogens</subject><subject>Patients</subject><subject>Physiology</subject><subject>Polyethylene terephthalate</subject><subject>Pseudomonas aeruginosa</subject><subject>Scanning microscopy</subject><subject>Silver</subject><subject>Silver nitrate</subject><subject>Surgical implants</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkNFLwzAQxoMoOObefQz4XL1r2jV5HMPpYG4iey9pmrQZXTKTDvG_t9t8EO_lDu73fcd9hNwjPDIm4El52VvXRMwQMcvZFRmlUIhkmmF6_We-JZMYdzCUQMZRjMjhTatWOhv3kXpDl67XTRjMvKPS1fRDd1pGfVrNmvWGUevovLW9j9LRhe0G1QnbttqGszhIdRZ_2b6lax-98nsrO_ou-9Y32sU7cmNkF_Xkt4_JdvG8nb8mq83Lcj5bJQohx8TkyCpWczQVKFDapAKUAmPACFQF11WR8yKrpinXGiE1ALWpM14pabhhbEweLraH4D-POvblzh-DGy6WDFkqimz4f6DgQqngYwzalIdg9zJ8lwjlKdnyf7LsB1tdbqg</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Román-Aguirre, Manuel</creator><creator>Barraza-Jimenez, Diana</creator><creator>Leyva-Porras, César</creator><creator>Peinado-Villalobos, Roxana</creator><creator>Molina-Jáquez, David</creator><creator>Olivas-Espino, Joel Arturo</creator><creator>Castillo-González, Alva Rocío</creator><creator>Camarillo-Cisneros, Javier</creator><creator>Favila-Pérez, María Alejandra</creator><creator>Quiñonez-Flores, Celia María</creator><creator>Arzate-Quintana, Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7878-1546</orcidid><orcidid>https://orcid.org/0000-0002-5673-5992</orcidid><orcidid>https://orcid.org/0000-0003-0396-3841</orcidid><orcidid>https://orcid.org/0000-0002-6310-9869</orcidid></search><sort><creationdate>20241114</creationdate><title>Mechanisms of Integration and Release of AgNO3 in Chitosan Films and Their Interaction with Nosocomial Pathogens</title><author>Román-Aguirre, Manuel ; Barraza-Jimenez, Diana ; Leyva-Porras, César ; Peinado-Villalobos, Roxana ; Molina-Jáquez, David ; Olivas-Espino, Joel Arturo ; Castillo-González, Alva Rocío ; Camarillo-Cisneros, Javier ; Favila-Pérez, María Alejandra ; Quiñonez-Flores, Celia María ; Arzate-Quintana, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1051-f513b3d81fb0c0cef290cc0ff0f91c78eb75874b628ee102f00dfd48bcaf8f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Catheters</topic><topic>Chitosan</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>E coli</topic><topic>Glycerol</topic><topic>Hospitals</topic><topic>Humidity</topic><topic>Inductively coupled plasma</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Medical equipment</topic><topic>Microorganisms</topic><topic>Nanoparticles</topic><topic>Nanostructured materials</topic><topic>Nitrates</topic><topic>Nosocomial infections</topic><topic>Pathogens</topic><topic>Patients</topic><topic>Physiology</topic><topic>Polyethylene terephthalate</topic><topic>Pseudomonas aeruginosa</topic><topic>Scanning microscopy</topic><topic>Silver</topic><topic>Silver nitrate</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Román-Aguirre, Manuel</creatorcontrib><creatorcontrib>Barraza-Jimenez, Diana</creatorcontrib><creatorcontrib>Leyva-Porras, César</creatorcontrib><creatorcontrib>Peinado-Villalobos, Roxana</creatorcontrib><creatorcontrib>Molina-Jáquez, David</creatorcontrib><creatorcontrib>Olivas-Espino, Joel Arturo</creatorcontrib><creatorcontrib>Castillo-González, Alva Rocío</creatorcontrib><creatorcontrib>Camarillo-Cisneros, Javier</creatorcontrib><creatorcontrib>Favila-Pérez, María Alejandra</creatorcontrib><creatorcontrib>Quiñonez-Flores, Celia María</creatorcontrib><creatorcontrib>Arzate-Quintana, Carlos</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Román-Aguirre, Manuel</au><au>Barraza-Jimenez, Diana</au><au>Leyva-Porras, César</au><au>Peinado-Villalobos, Roxana</au><au>Molina-Jáquez, David</au><au>Olivas-Espino, Joel Arturo</au><au>Castillo-González, Alva Rocío</au><au>Camarillo-Cisneros, Javier</au><au>Favila-Pérez, María Alejandra</au><au>Quiñonez-Flores, Celia María</au><au>Arzate-Quintana, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Integration and Release of AgNO3 in Chitosan Films and Their Interaction with Nosocomial Pathogens</atitle><jtitle>Coatings (Basel)</jtitle><date>2024-11-14</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>1453</spage><pages>1453-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Postsurgical infections are an important cause of implant failure, and biomaterials such as Chitosan can be used as an antimicrobial coating to address this important problem. Characterization of silver distribution was performed by several methods, including Electron scanning microscopy (SEM), Inductively coupled plasma (ICP), and Infrared spectrometry (IR). Antimicrobial activity was tested against Candida albicans ATCC 10231, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa BAA-1744 ATCC 109246. The inhibition assays showed that Chitosan films inhibited 68% of C. albicans growth and 23.5% of E. coli growth; the rest of the microorganisms did not have any statistically relevant inhibition. E. coli, P. aeruginosa, and C. albicans were completely inhibited in films with 0.25 mg/mL of AgNO3 and inhibited 82.5% of S. aureus. The mechanism of integration and release of silver in the films was analyzed by the Density Functional Theory (DFT), considering this analysis of geometry optimization as well as infrared spectroscopy. DFT analysis showed that AgNO3 is not trapped by covalence in chitosan, being a more stable system when it is closer to an OH group. Chitosan films functionalized with antimicrobial compounds are a promising antimicrobial coating for use in biomaterials to prevent postsurgical complications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings14111453</doi><orcidid>https://orcid.org/0000-0001-7878-1546</orcidid><orcidid>https://orcid.org/0000-0002-5673-5992</orcidid><orcidid>https://orcid.org/0000-0003-0396-3841</orcidid><orcidid>https://orcid.org/0000-0002-6310-9869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2024-11, Vol.14 (11), p.1453 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_3132974381 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Antibiotics Antimicrobial agents Bacteria Biodegradation Biomedical materials Catheters Chitosan Crystal structure Density functional theory E coli Glycerol Hospitals Humidity Inductively coupled plasma Infrared analysis Infrared spectroscopy Medical equipment Microorganisms Nanoparticles Nanostructured materials Nitrates Nosocomial infections Pathogens Patients Physiology Polyethylene terephthalate Pseudomonas aeruginosa Scanning microscopy Silver Silver nitrate Surgical implants |
title | Mechanisms of Integration and Release of AgNO3 in Chitosan Films and Their Interaction with Nosocomial Pathogens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Integration%20and%20Release%20of%20AgNO3%20in%20Chitosan%20Films%20and%20Their%20Interaction%20with%20Nosocomial%20Pathogens&rft.jtitle=Coatings%20(Basel)&rft.au=Rom%C3%A1n-Aguirre,%20Manuel&rft.date=2024-11-14&rft.volume=14&rft.issue=11&rft.spage=1453&rft.pages=1453-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings14111453&rft_dat=%3Cproquest_cross%3E3132974381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132974381&rft_id=info:pmid/&rfr_iscdi=true |