Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets

Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economies 2024-11, Vol.12 (11), p.310
Hauptverfasser: Mello, Fernando Dupin da Cunha, Kumar, Prashant, Sperandio Nascimento, Erick G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 310
container_title Economies
container_volume 12
creator Mello, Fernando Dupin da Cunha
Kumar, Prashant
Sperandio Nascimento, Erick G
description Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics and policymaking. This review examines over 100 soybean price forecast models published in the last decade, evaluating them based on the specific markets they target—futures or spot—while highlighting how differences between these markets influence critical model design decisions. The models are also classified into AI-powered and traditional categories, with an initial aim to conduct a statistical analysis comparing the performance of these two groups. This process unveiled a fundamental gap in best practices, particularly regarding the use of common benchmarks and standardised performance metrics, which limits the ability to make meaningful cross-study comparisons. Finally, this study underscores another important research gap: the lack of models forecasting soybean futures prices in Brazil, the world’s largest producer and exporter. These insights provide valuable guidance for researchers, market participants, and policymakers in agricultural economics.
doi_str_mv 10.3390/economies12110310
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3132885971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818100169</galeid><doaj_id>oai_doaj_org_article_cd12dba74dc447f1834908b1dad41cf9</doaj_id><sourcerecordid>A818100169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2121-3779e11d751639bb660a41bd856e3d0e04c81f015bbbab0a50b0ae3ac7662dbd3</originalsourceid><addsrcrecordid>eNplkd1qGzEQhZfSQEOaB-idoLd1qlntj9Q7YxrXkJKQtNdiJM1u5HolV1oH8vZV4lISKsGMOJz5GHGq6gPwCyEU_0w2hjh5ylADcAH8TXVa13W_6LlSb1-831XnOW95OQqErOVp5ZbuAYOlicKcmQ_sLj4awsBukrfELmMii3n2YfzCNtMe7cziwJYbhsGxVfKzt7hjt5QJk71na9w_U9a7aIr-HdMvmvP76mTAXabzv_2s-nn59cfq2-Lqer1ZLa8Wti6bL0TfKwJwfQudUMZ0HccGjJNtR8Jx4o2VMHBojTFoOLa8FBJo-66rnXHirNocuS7iVu-TnzA96ohePwsxjRpT2XhH2jooI9g3zjZNP4AUjeLSgEPXgB1UYX08svYp_j5QnvU2HlIo62sBopayVT0U18XRNWKB-jDEOaEt19HkSyo0-KIvJUjgHLon7KcXA-aQfaBcSvbj_ZxHPOT82g5Hu00x50TDv18B10_Z6_-yF38AKeuiOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132885971</pqid></control><display><type>article</type><title>Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Mello, Fernando Dupin da Cunha ; Kumar, Prashant ; Sperandio Nascimento, Erick G</creator><creatorcontrib>Mello, Fernando Dupin da Cunha ; Kumar, Prashant ; Sperandio Nascimento, Erick G</creatorcontrib><description>Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics and policymaking. This review examines over 100 soybean price forecast models published in the last decade, evaluating them based on the specific markets they target—futures or spot—while highlighting how differences between these markets influence critical model design decisions. The models are also classified into AI-powered and traditional categories, with an initial aim to conduct a statistical analysis comparing the performance of these two groups. This process unveiled a fundamental gap in best practices, particularly regarding the use of common benchmarks and standardised performance metrics, which limits the ability to make meaningful cross-study comparisons. Finally, this study underscores another important research gap: the lack of models forecasting soybean futures prices in Brazil, the world’s largest producer and exporter. These insights provide valuable guidance for researchers, market participants, and policymakers in agricultural economics.</description><identifier>ISSN: 2227-7099</identifier><identifier>EISSN: 2227-7099</identifier><identifier>DOI: 10.3390/economies12110310</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Agricultural commodities ; Agriculture ; artificial intelligence ; Boolean ; Business operations ; Commodity prices ; Data mining ; Decision making ; Food security ; Food supply ; Forecasting ; futures market ; Literature reviews ; price forecast ; soybean ; Soybeans ; spot market ; Supply chains ; Trends ; Volatility</subject><ispartof>Economies, 2024-11, Vol.12 (11), p.310</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2121-3779e11d751639bb660a41bd856e3d0e04c81f015bbbab0a50b0ae3ac7662dbd3</cites><orcidid>0009-0006-9922-2763 ; 0000-0003-2219-0290 ; 0000-0002-2462-4411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,27929,27930</link.rule.ids></links><search><creatorcontrib>Mello, Fernando Dupin da Cunha</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Sperandio Nascimento, Erick G</creatorcontrib><title>Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets</title><title>Economies</title><description>Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics and policymaking. This review examines over 100 soybean price forecast models published in the last decade, evaluating them based on the specific markets they target—futures or spot—while highlighting how differences between these markets influence critical model design decisions. The models are also classified into AI-powered and traditional categories, with an initial aim to conduct a statistical analysis comparing the performance of these two groups. This process unveiled a fundamental gap in best practices, particularly regarding the use of common benchmarks and standardised performance metrics, which limits the ability to make meaningful cross-study comparisons. Finally, this study underscores another important research gap: the lack of models forecasting soybean futures prices in Brazil, the world’s largest producer and exporter. These insights provide valuable guidance for researchers, market participants, and policymakers in agricultural economics.</description><subject>Accuracy</subject><subject>Agricultural commodities</subject><subject>Agriculture</subject><subject>artificial intelligence</subject><subject>Boolean</subject><subject>Business operations</subject><subject>Commodity prices</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Food security</subject><subject>Food supply</subject><subject>Forecasting</subject><subject>futures market</subject><subject>Literature reviews</subject><subject>price forecast</subject><subject>soybean</subject><subject>Soybeans</subject><subject>spot market</subject><subject>Supply chains</subject><subject>Trends</subject><subject>Volatility</subject><issn>2227-7099</issn><issn>2227-7099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNplkd1qGzEQhZfSQEOaB-idoLd1qlntj9Q7YxrXkJKQtNdiJM1u5HolV1oH8vZV4lISKsGMOJz5GHGq6gPwCyEU_0w2hjh5ylADcAH8TXVa13W_6LlSb1-831XnOW95OQqErOVp5ZbuAYOlicKcmQ_sLj4awsBukrfELmMii3n2YfzCNtMe7cziwJYbhsGxVfKzt7hjt5QJk71na9w_U9a7aIr-HdMvmvP76mTAXabzv_2s-nn59cfq2-Lqer1ZLa8Wti6bL0TfKwJwfQudUMZ0HccGjJNtR8Jx4o2VMHBojTFoOLa8FBJo-66rnXHirNocuS7iVu-TnzA96ohePwsxjRpT2XhH2jooI9g3zjZNP4AUjeLSgEPXgB1UYX08svYp_j5QnvU2HlIo62sBopayVT0U18XRNWKB-jDEOaEt19HkSyo0-KIvJUjgHLon7KcXA-aQfaBcSvbj_ZxHPOT82g5Hu00x50TDv18B10_Z6_-yF38AKeuiOg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mello, Fernando Dupin da Cunha</creator><creator>Kumar, Prashant</creator><creator>Sperandio Nascimento, Erick G</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-9922-2763</orcidid><orcidid>https://orcid.org/0000-0003-2219-0290</orcidid><orcidid>https://orcid.org/0000-0002-2462-4411</orcidid></search><sort><creationdate>20241101</creationdate><title>Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets</title><author>Mello, Fernando Dupin da Cunha ; Kumar, Prashant ; Sperandio Nascimento, Erick G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2121-3779e11d751639bb660a41bd856e3d0e04c81f015bbbab0a50b0ae3ac7662dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agricultural commodities</topic><topic>Agriculture</topic><topic>artificial intelligence</topic><topic>Boolean</topic><topic>Business operations</topic><topic>Commodity prices</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Food security</topic><topic>Food supply</topic><topic>Forecasting</topic><topic>futures market</topic><topic>Literature reviews</topic><topic>price forecast</topic><topic>soybean</topic><topic>Soybeans</topic><topic>spot market</topic><topic>Supply chains</topic><topic>Trends</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mello, Fernando Dupin da Cunha</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Sperandio Nascimento, Erick G</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Economies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mello, Fernando Dupin da Cunha</au><au>Kumar, Prashant</au><au>Sperandio Nascimento, Erick G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets</atitle><jtitle>Economies</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>11</issue><spage>310</spage><pages>310-</pages><issn>2227-7099</issn><eissn>2227-7099</eissn><abstract>Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics and policymaking. This review examines over 100 soybean price forecast models published in the last decade, evaluating them based on the specific markets they target—futures or spot—while highlighting how differences between these markets influence critical model design decisions. The models are also classified into AI-powered and traditional categories, with an initial aim to conduct a statistical analysis comparing the performance of these two groups. This process unveiled a fundamental gap in best practices, particularly regarding the use of common benchmarks and standardised performance metrics, which limits the ability to make meaningful cross-study comparisons. Finally, this study underscores another important research gap: the lack of models forecasting soybean futures prices in Brazil, the world’s largest producer and exporter. These insights provide valuable guidance for researchers, market participants, and policymakers in agricultural economics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/economies12110310</doi><orcidid>https://orcid.org/0009-0006-9922-2763</orcidid><orcidid>https://orcid.org/0000-0003-2219-0290</orcidid><orcidid>https://orcid.org/0000-0002-2462-4411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7099
ispartof Economies, 2024-11, Vol.12 (11), p.310
issn 2227-7099
2227-7099
language eng
recordid cdi_proquest_journals_3132885971
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Agricultural commodities
Agriculture
artificial intelligence
Boolean
Business operations
Commodity prices
Data mining
Decision making
Food security
Food supply
Forecasting
futures market
Literature reviews
price forecast
soybean
Soybeans
spot market
Supply chains
Trends
Volatility
title Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20in%20Soybean%20Price%20Forecasting:%20Impact%20of%20AI%20and%20Critical%20Research%20Gaps%20in%20Global%20Markets&rft.jtitle=Economies&rft.au=Mello,%20Fernando%20Dupin%20da%20Cunha&rft.date=2024-11-01&rft.volume=12&rft.issue=11&rft.spage=310&rft.pages=310-&rft.issn=2227-7099&rft.eissn=2227-7099&rft_id=info:doi/10.3390/economies12110310&rft_dat=%3Cgale_doaj_%3EA818100169%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132885971&rft_id=info:pmid/&rft_galeid=A818100169&rft_doaj_id=oai_doaj_org_article_cd12dba74dc447f1834908b1dad41cf9&rfr_iscdi=true