Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets
Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics a...
Gespeichert in:
Veröffentlicht in: | Economies 2024-11, Vol.12 (11), p.310 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 310 |
container_title | Economies |
container_volume | 12 |
creator | Mello, Fernando Dupin da Cunha Kumar, Prashant Sperandio Nascimento, Erick G |
description | Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics and policymaking. This review examines over 100 soybean price forecast models published in the last decade, evaluating them based on the specific markets they target—futures or spot—while highlighting how differences between these markets influence critical model design decisions. The models are also classified into AI-powered and traditional categories, with an initial aim to conduct a statistical analysis comparing the performance of these two groups. This process unveiled a fundamental gap in best practices, particularly regarding the use of common benchmarks and standardised performance metrics, which limits the ability to make meaningful cross-study comparisons. Finally, this study underscores another important research gap: the lack of models forecasting soybean futures prices in Brazil, the world’s largest producer and exporter. These insights provide valuable guidance for researchers, market participants, and policymakers in agricultural economics. |
doi_str_mv | 10.3390/economies12110310 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3132885971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818100169</galeid><doaj_id>oai_doaj_org_article_cd12dba74dc447f1834908b1dad41cf9</doaj_id><sourcerecordid>A818100169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2121-3779e11d751639bb660a41bd856e3d0e04c81f015bbbab0a50b0ae3ac7662dbd3</originalsourceid><addsrcrecordid>eNplkd1qGzEQhZfSQEOaB-idoLd1qlntj9Q7YxrXkJKQtNdiJM1u5HolV1oH8vZV4lISKsGMOJz5GHGq6gPwCyEU_0w2hjh5ylADcAH8TXVa13W_6LlSb1-831XnOW95OQqErOVp5ZbuAYOlicKcmQ_sLj4awsBukrfELmMii3n2YfzCNtMe7cziwJYbhsGxVfKzt7hjt5QJk71na9w_U9a7aIr-HdMvmvP76mTAXabzv_2s-nn59cfq2-Lqer1ZLa8Wti6bL0TfKwJwfQudUMZ0HccGjJNtR8Jx4o2VMHBojTFoOLa8FBJo-66rnXHirNocuS7iVu-TnzA96ohePwsxjRpT2XhH2jooI9g3zjZNP4AUjeLSgEPXgB1UYX08svYp_j5QnvU2HlIo62sBopayVT0U18XRNWKB-jDEOaEt19HkSyo0-KIvJUjgHLon7KcXA-aQfaBcSvbj_ZxHPOT82g5Hu00x50TDv18B10_Z6_-yF38AKeuiOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132885971</pqid></control><display><type>article</type><title>Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Mello, Fernando Dupin da Cunha ; Kumar, Prashant ; Sperandio Nascimento, Erick G</creator><creatorcontrib>Mello, Fernando Dupin da Cunha ; Kumar, Prashant ; Sperandio Nascimento, Erick G</creatorcontrib><description>Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics and policymaking. This review examines over 100 soybean price forecast models published in the last decade, evaluating them based on the specific markets they target—futures or spot—while highlighting how differences between these markets influence critical model design decisions. The models are also classified into AI-powered and traditional categories, with an initial aim to conduct a statistical analysis comparing the performance of these two groups. This process unveiled a fundamental gap in best practices, particularly regarding the use of common benchmarks and standardised performance metrics, which limits the ability to make meaningful cross-study comparisons. Finally, this study underscores another important research gap: the lack of models forecasting soybean futures prices in Brazil, the world’s largest producer and exporter. These insights provide valuable guidance for researchers, market participants, and policymakers in agricultural economics.</description><identifier>ISSN: 2227-7099</identifier><identifier>EISSN: 2227-7099</identifier><identifier>DOI: 10.3390/economies12110310</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Agricultural commodities ; Agriculture ; artificial intelligence ; Boolean ; Business operations ; Commodity prices ; Data mining ; Decision making ; Food security ; Food supply ; Forecasting ; futures market ; Literature reviews ; price forecast ; soybean ; Soybeans ; spot market ; Supply chains ; Trends ; Volatility</subject><ispartof>Economies, 2024-11, Vol.12 (11), p.310</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2121-3779e11d751639bb660a41bd856e3d0e04c81f015bbbab0a50b0ae3ac7662dbd3</cites><orcidid>0009-0006-9922-2763 ; 0000-0003-2219-0290 ; 0000-0002-2462-4411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,27929,27930</link.rule.ids></links><search><creatorcontrib>Mello, Fernando Dupin da Cunha</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Sperandio Nascimento, Erick G</creatorcontrib><title>Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets</title><title>Economies</title><description>Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics and policymaking. This review examines over 100 soybean price forecast models published in the last decade, evaluating them based on the specific markets they target—futures or spot—while highlighting how differences between these markets influence critical model design decisions. The models are also classified into AI-powered and traditional categories, with an initial aim to conduct a statistical analysis comparing the performance of these two groups. This process unveiled a fundamental gap in best practices, particularly regarding the use of common benchmarks and standardised performance metrics, which limits the ability to make meaningful cross-study comparisons. Finally, this study underscores another important research gap: the lack of models forecasting soybean futures prices in Brazil, the world’s largest producer and exporter. These insights provide valuable guidance for researchers, market participants, and policymakers in agricultural economics.</description><subject>Accuracy</subject><subject>Agricultural commodities</subject><subject>Agriculture</subject><subject>artificial intelligence</subject><subject>Boolean</subject><subject>Business operations</subject><subject>Commodity prices</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Food security</subject><subject>Food supply</subject><subject>Forecasting</subject><subject>futures market</subject><subject>Literature reviews</subject><subject>price forecast</subject><subject>soybean</subject><subject>Soybeans</subject><subject>spot market</subject><subject>Supply chains</subject><subject>Trends</subject><subject>Volatility</subject><issn>2227-7099</issn><issn>2227-7099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNplkd1qGzEQhZfSQEOaB-idoLd1qlntj9Q7YxrXkJKQtNdiJM1u5HolV1oH8vZV4lISKsGMOJz5GHGq6gPwCyEU_0w2hjh5ylADcAH8TXVa13W_6LlSb1-831XnOW95OQqErOVp5ZbuAYOlicKcmQ_sLj4awsBukrfELmMii3n2YfzCNtMe7cziwJYbhsGxVfKzt7hjt5QJk71na9w_U9a7aIr-HdMvmvP76mTAXabzv_2s-nn59cfq2-Lqer1ZLa8Wti6bL0TfKwJwfQudUMZ0HccGjJNtR8Jx4o2VMHBojTFoOLa8FBJo-66rnXHirNocuS7iVu-TnzA96ohePwsxjRpT2XhH2jooI9g3zjZNP4AUjeLSgEPXgB1UYX08svYp_j5QnvU2HlIo62sBopayVT0U18XRNWKB-jDEOaEt19HkSyo0-KIvJUjgHLon7KcXA-aQfaBcSvbj_ZxHPOT82g5Hu00x50TDv18B10_Z6_-yF38AKeuiOg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mello, Fernando Dupin da Cunha</creator><creator>Kumar, Prashant</creator><creator>Sperandio Nascimento, Erick G</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-9922-2763</orcidid><orcidid>https://orcid.org/0000-0003-2219-0290</orcidid><orcidid>https://orcid.org/0000-0002-2462-4411</orcidid></search><sort><creationdate>20241101</creationdate><title>Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets</title><author>Mello, Fernando Dupin da Cunha ; Kumar, Prashant ; Sperandio Nascimento, Erick G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2121-3779e11d751639bb660a41bd856e3d0e04c81f015bbbab0a50b0ae3ac7662dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agricultural commodities</topic><topic>Agriculture</topic><topic>artificial intelligence</topic><topic>Boolean</topic><topic>Business operations</topic><topic>Commodity prices</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Food security</topic><topic>Food supply</topic><topic>Forecasting</topic><topic>futures market</topic><topic>Literature reviews</topic><topic>price forecast</topic><topic>soybean</topic><topic>Soybeans</topic><topic>spot market</topic><topic>Supply chains</topic><topic>Trends</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mello, Fernando Dupin da Cunha</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Sperandio Nascimento, Erick G</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Economies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mello, Fernando Dupin da Cunha</au><au>Kumar, Prashant</au><au>Sperandio Nascimento, Erick G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets</atitle><jtitle>Economies</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>11</issue><spage>310</spage><pages>310-</pages><issn>2227-7099</issn><eissn>2227-7099</eissn><abstract>Soybeans, a vital source of protein for animal feed and an essential industrial raw material, are the most traded agricultural commodity worldwide. Accurate price forecasting is crucial for maintaining a resilient global food supply chain and has significant implications for agricultural economics and policymaking. This review examines over 100 soybean price forecast models published in the last decade, evaluating them based on the specific markets they target—futures or spot—while highlighting how differences between these markets influence critical model design decisions. The models are also classified into AI-powered and traditional categories, with an initial aim to conduct a statistical analysis comparing the performance of these two groups. This process unveiled a fundamental gap in best practices, particularly regarding the use of common benchmarks and standardised performance metrics, which limits the ability to make meaningful cross-study comparisons. Finally, this study underscores another important research gap: the lack of models forecasting soybean futures prices in Brazil, the world’s largest producer and exporter. These insights provide valuable guidance for researchers, market participants, and policymakers in agricultural economics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/economies12110310</doi><orcidid>https://orcid.org/0009-0006-9922-2763</orcidid><orcidid>https://orcid.org/0000-0003-2219-0290</orcidid><orcidid>https://orcid.org/0000-0002-2462-4411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7099 |
ispartof | Economies, 2024-11, Vol.12 (11), p.310 |
issn | 2227-7099 2227-7099 |
language | eng |
recordid | cdi_proquest_journals_3132885971 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Agricultural commodities Agriculture artificial intelligence Boolean Business operations Commodity prices Data mining Decision making Food security Food supply Forecasting futures market Literature reviews price forecast soybean Soybeans spot market Supply chains Trends Volatility |
title | Advancements in Soybean Price Forecasting: Impact of AI and Critical Research Gaps in Global Markets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20in%20Soybean%20Price%20Forecasting:%20Impact%20of%20AI%20and%20Critical%20Research%20Gaps%20in%20Global%20Markets&rft.jtitle=Economies&rft.au=Mello,%20Fernando%20Dupin%20da%20Cunha&rft.date=2024-11-01&rft.volume=12&rft.issue=11&rft.spage=310&rft.pages=310-&rft.issn=2227-7099&rft.eissn=2227-7099&rft_id=info:doi/10.3390/economies12110310&rft_dat=%3Cgale_doaj_%3EA818100169%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132885971&rft_id=info:pmid/&rft_galeid=A818100169&rft_doaj_id=oai_doaj_org_article_cd12dba74dc447f1834908b1dad41cf9&rfr_iscdi=true |