Advance Rate Predictions of Tunnel Boring Machines Using Bayesian-Optimized CNN-LSTM

AbstractDuring the tunnelling process of a tunnel boring machine (TBM), accurately predicting the advance rate (AR) is highly desirable for enhancing construction efficiency and safety. Inaccurate AR estimates may lead to extended construction periods and, thus, increased project costs. This study i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering Civil Engineering, 2025-03, Vol.11 (1)
Hauptverfasser: Men, Xiaoxiong, Li, Yuanfei, Guo, Baohe, Wang, Lai, Ye, Xinyu, Pan, Qiujing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!