Advance Rate Predictions of Tunnel Boring Machines Using Bayesian-Optimized CNN-LSTM
AbstractDuring the tunnelling process of a tunnel boring machine (TBM), accurately predicting the advance rate (AR) is highly desirable for enhancing construction efficiency and safety. Inaccurate AR estimates may lead to extended construction periods and, thus, increased project costs. This study i...
Gespeichert in:
Veröffentlicht in: | ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering Civil Engineering, 2025-03, Vol.11 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!