Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis
Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortic...
Gespeichert in:
Veröffentlicht in: | Biomass conversion and biorefinery 2024, Vol.14 (23), p.30415-30434 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30434 |
---|---|
container_issue | 23 |
container_start_page | 30415 |
container_title | Biomass conversion and biorefinery |
container_volume | 14 |
creator | Mudoi, Manash Protim Sinha, Shishir Parthasarthy, Vijay |
description | Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortication methods. Cellulose (>86 wt.%) is the principal constituent of this fibre. In this study, epoxy-based composites were prepared with 0, 15, 20, 23, 25, 27, and 30 wt.% fibre loadings and investigated the influence of fibre content on thermal, mechanical, and physical properties. The samples were analysed with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, universal testing machine, dynamic mechanical analysis, thermogravimetric analysis, density and void fraction measurement, and water absorption test. It was found that mechanical and thermal properties were increased with the increase in fibre loadings, attaining the maximum values at 23 wt.%, which signified the improvement in mechanical and thermal properties with fibre reinforcement. The fibre fraction of 23 wt.% resulted in the higher tensile (57.69 MPa), flexural (98.60 MPa), impact (0.689 J) strength, better thermal stability, higher storage modulus (1390.90 MPa), loss modulus (413.05 MPa), and crystallinity (40.5%). This study concludes 23 wt.% fibre loading as optimum reinforcement for the studied epoxy polymer. |
doi_str_mv | 10.1007/s13399-023-04819-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132823514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132823514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-460b68e344898162e325f0ccd03a304bccc596d0b7ee556f729248abdd645b643</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxJbA2OM4CTtU8ZIqsYG15TgTmiov7HTRv8clCHas5i7OvRodxi4F3AiA7DYIxKJIQGICKhcxnbCFFAUkOpd4-ptFes5WIewAIpphjrBg9rnpbGsPtuc9TVNLvG5KT4mnpq8H76ji49AeOvLcDd04hGaiO275uD2Extn2mnfktrafs-0rPm3Jx8mYbRuZcMHOatsGWv3cJXt_fHhbPyeb16eX9f0mcSiKKVEaSp0TKpUXudCSUKY1OFcBWgRVOufSQldQZkRpqutMFlLltqwqrdJSK1yyq3l39MPnnsJkdsPexyeCQYEymkjFkZIz5fwQgqfajD4a8AcjwBxtmtmmiYrMt00DsYRzKUS4_yD_N_1P6wstLney</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132823514</pqid></control><display><type>article</type><title>Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mudoi, Manash Protim ; Sinha, Shishir ; Parthasarthy, Vijay</creator><creatorcontrib>Mudoi, Manash Protim ; Sinha, Shishir ; Parthasarthy, Vijay</creatorcontrib><description>Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortication methods. Cellulose (>86 wt.%) is the principal constituent of this fibre. In this study, epoxy-based composites were prepared with 0, 15, 20, 23, 25, 27, and 30 wt.% fibre loadings and investigated the influence of fibre content on thermal, mechanical, and physical properties. The samples were analysed with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, universal testing machine, dynamic mechanical analysis, thermogravimetric analysis, density and void fraction measurement, and water absorption test. It was found that mechanical and thermal properties were increased with the increase in fibre loadings, attaining the maximum values at 23 wt.%, which signified the improvement in mechanical and thermal properties with fibre reinforcement. The fibre fraction of 23 wt.% resulted in the higher tensile (57.69 MPa), flexural (98.60 MPa), impact (0.689 J) strength, better thermal stability, higher storage modulus (1390.90 MPa), loss modulus (413.05 MPa), and crystallinity (40.5%). This study concludes 23 wt.% fibre loading as optimum reinforcement for the studied epoxy polymer.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-023-04819-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotechnology ; Chemical synthesis ; Dynamic mechanical analysis ; Energy ; Fiber composites ; Fiber reinforced polymers ; Fiber reinforcement ; Fourier transforms ; Infrared analysis ; Loss modulus ; Microorganisms ; Original Article ; Physical properties ; Polymer matrix composites ; Polymers ; Renewable and Green Energy ; Retting ; Storage modulus ; Thermal analysis ; Thermal stability ; Thermodynamic properties ; Thermogravimetric analysis ; Void fraction ; Water absorption</subject><ispartof>Biomass conversion and biorefinery, 2024, Vol.14 (23), p.30415-30434</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-460b68e344898162e325f0ccd03a304bccc596d0b7ee556f729248abdd645b643</citedby><cites>FETCH-LOGICAL-c319t-460b68e344898162e325f0ccd03a304bccc596d0b7ee556f729248abdd645b643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13399-023-04819-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13399-023-04819-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mudoi, Manash Protim</creatorcontrib><creatorcontrib>Sinha, Shishir</creatorcontrib><creatorcontrib>Parthasarthy, Vijay</creatorcontrib><title>Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortication methods. Cellulose (>86 wt.%) is the principal constituent of this fibre. In this study, epoxy-based composites were prepared with 0, 15, 20, 23, 25, 27, and 30 wt.% fibre loadings and investigated the influence of fibre content on thermal, mechanical, and physical properties. The samples were analysed with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, universal testing machine, dynamic mechanical analysis, thermogravimetric analysis, density and void fraction measurement, and water absorption test. It was found that mechanical and thermal properties were increased with the increase in fibre loadings, attaining the maximum values at 23 wt.%, which signified the improvement in mechanical and thermal properties with fibre reinforcement. The fibre fraction of 23 wt.% resulted in the higher tensile (57.69 MPa), flexural (98.60 MPa), impact (0.689 J) strength, better thermal stability, higher storage modulus (1390.90 MPa), loss modulus (413.05 MPa), and crystallinity (40.5%). This study concludes 23 wt.% fibre loading as optimum reinforcement for the studied epoxy polymer.</description><subject>Biotechnology</subject><subject>Chemical synthesis</subject><subject>Dynamic mechanical analysis</subject><subject>Energy</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fiber reinforcement</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Loss modulus</subject><subject>Microorganisms</subject><subject>Original Article</subject><subject>Physical properties</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Renewable and Green Energy</subject><subject>Retting</subject><subject>Storage modulus</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Void fraction</subject><subject>Water absorption</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CyxJbA2OM4CTtU8ZIqsYG15TgTmiov7HTRv8clCHas5i7OvRodxi4F3AiA7DYIxKJIQGICKhcxnbCFFAUkOpd4-ptFes5WIewAIpphjrBg9rnpbGsPtuc9TVNLvG5KT4mnpq8H76ji49AeOvLcDd04hGaiO275uD2Extn2mnfktrafs-0rPm3Jx8mYbRuZcMHOatsGWv3cJXt_fHhbPyeb16eX9f0mcSiKKVEaSp0TKpUXudCSUKY1OFcBWgRVOufSQldQZkRpqutMFlLltqwqrdJSK1yyq3l39MPnnsJkdsPexyeCQYEymkjFkZIz5fwQgqfajD4a8AcjwBxtmtmmiYrMt00DsYRzKUS4_yD_N_1P6wstLney</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mudoi, Manash Protim</creator><creator>Sinha, Shishir</creator><creator>Parthasarthy, Vijay</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis</title><author>Mudoi, Manash Protim ; Sinha, Shishir ; Parthasarthy, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-460b68e344898162e325f0ccd03a304bccc596d0b7ee556f729248abdd645b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biotechnology</topic><topic>Chemical synthesis</topic><topic>Dynamic mechanical analysis</topic><topic>Energy</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fiber reinforcement</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Loss modulus</topic><topic>Microorganisms</topic><topic>Original Article</topic><topic>Physical properties</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Renewable and Green Energy</topic><topic>Retting</topic><topic>Storage modulus</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Void fraction</topic><topic>Water absorption</topic><toplevel>online_resources</toplevel><creatorcontrib>Mudoi, Manash Protim</creatorcontrib><creatorcontrib>Sinha, Shishir</creatorcontrib><creatorcontrib>Parthasarthy, Vijay</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mudoi, Manash Protim</au><au>Sinha, Shishir</au><au>Parthasarthy, Vijay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2024</date><risdate>2024</risdate><volume>14</volume><issue>23</issue><spage>30415</spage><epage>30434</epage><pages>30415-30434</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortication methods. Cellulose (>86 wt.%) is the principal constituent of this fibre. In this study, epoxy-based composites were prepared with 0, 15, 20, 23, 25, 27, and 30 wt.% fibre loadings and investigated the influence of fibre content on thermal, mechanical, and physical properties. The samples were analysed with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, universal testing machine, dynamic mechanical analysis, thermogravimetric analysis, density and void fraction measurement, and water absorption test. It was found that mechanical and thermal properties were increased with the increase in fibre loadings, attaining the maximum values at 23 wt.%, which signified the improvement in mechanical and thermal properties with fibre reinforcement. The fibre fraction of 23 wt.% resulted in the higher tensile (57.69 MPa), flexural (98.60 MPa), impact (0.689 J) strength, better thermal stability, higher storage modulus (1390.90 MPa), loss modulus (413.05 MPa), and crystallinity (40.5%). This study concludes 23 wt.% fibre loading as optimum reinforcement for the studied epoxy polymer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-023-04819-0</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-6815 |
ispartof | Biomass conversion and biorefinery, 2024, Vol.14 (23), p.30415-30434 |
issn | 2190-6815 2190-6823 |
language | eng |
recordid | cdi_proquest_journals_3132823514 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biotechnology Chemical synthesis Dynamic mechanical analysis Energy Fiber composites Fiber reinforced polymers Fiber reinforcement Fourier transforms Infrared analysis Loss modulus Microorganisms Original Article Physical properties Polymer matrix composites Polymers Renewable and Green Energy Retting Storage modulus Thermal analysis Thermal stability Thermodynamic properties Thermogravimetric analysis Void fraction Water absorption |
title | Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Himalayan%20nettle%20fibre-reinforced%20polymer%20composite:%20a%20physical,%20mechanical,%20and%20thermal%20analysis&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Mudoi,%20Manash%20Protim&rft.date=2024&rft.volume=14&rft.issue=23&rft.spage=30415&rft.epage=30434&rft.pages=30415-30434&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-023-04819-0&rft_dat=%3Cproquest_cross%3E3132823514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132823514&rft_id=info:pmid/&rfr_iscdi=true |