Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis

Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomass conversion and biorefinery 2024, Vol.14 (23), p.30415-30434
Hauptverfasser: Mudoi, Manash Protim, Sinha, Shishir, Parthasarthy, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30434
container_issue 23
container_start_page 30415
container_title Biomass conversion and biorefinery
container_volume 14
creator Mudoi, Manash Protim
Sinha, Shishir
Parthasarthy, Vijay
description Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortication methods. Cellulose (>86 wt.%) is the principal constituent of this fibre. In this study, epoxy-based composites were prepared with 0, 15, 20, 23, 25, 27, and 30 wt.% fibre loadings and investigated the influence of fibre content on thermal, mechanical, and physical properties. The samples were analysed with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, universal testing machine, dynamic mechanical analysis, thermogravimetric analysis, density and void fraction measurement, and water absorption test. It was found that mechanical and thermal properties were increased with the increase in fibre loadings, attaining the maximum values at 23 wt.%, which signified the improvement in mechanical and thermal properties with fibre reinforcement. The fibre fraction of 23 wt.% resulted in the higher tensile (57.69 MPa), flexural (98.60 MPa), impact (0.689 J) strength, better thermal stability, higher storage modulus (1390.90 MPa), loss modulus (413.05 MPa), and crystallinity (40.5%). This study concludes 23 wt.% fibre loading as optimum reinforcement for the studied epoxy polymer.
doi_str_mv 10.1007/s13399-023-04819-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132823514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132823514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-460b68e344898162e325f0ccd03a304bccc596d0b7ee556f729248abdd645b643</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxJbA2OM4CTtU8ZIqsYG15TgTmiov7HTRv8clCHas5i7OvRodxi4F3AiA7DYIxKJIQGICKhcxnbCFFAUkOpd4-ptFes5WIewAIpphjrBg9rnpbGsPtuc9TVNLvG5KT4mnpq8H76ji49AeOvLcDd04hGaiO275uD2Extn2mnfktrafs-0rPm3Jx8mYbRuZcMHOatsGWv3cJXt_fHhbPyeb16eX9f0mcSiKKVEaSp0TKpUXudCSUKY1OFcBWgRVOufSQldQZkRpqutMFlLltqwqrdJSK1yyq3l39MPnnsJkdsPexyeCQYEymkjFkZIz5fwQgqfajD4a8AcjwBxtmtmmiYrMt00DsYRzKUS4_yD_N_1P6wstLney</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132823514</pqid></control><display><type>article</type><title>Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mudoi, Manash Protim ; Sinha, Shishir ; Parthasarthy, Vijay</creator><creatorcontrib>Mudoi, Manash Protim ; Sinha, Shishir ; Parthasarthy, Vijay</creatorcontrib><description>Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortication methods. Cellulose (&gt;86 wt.%) is the principal constituent of this fibre. In this study, epoxy-based composites were prepared with 0, 15, 20, 23, 25, 27, and 30 wt.% fibre loadings and investigated the influence of fibre content on thermal, mechanical, and physical properties. The samples were analysed with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, universal testing machine, dynamic mechanical analysis, thermogravimetric analysis, density and void fraction measurement, and water absorption test. It was found that mechanical and thermal properties were increased with the increase in fibre loadings, attaining the maximum values at 23 wt.%, which signified the improvement in mechanical and thermal properties with fibre reinforcement. The fibre fraction of 23 wt.% resulted in the higher tensile (57.69 MPa), flexural (98.60 MPa), impact (0.689 J) strength, better thermal stability, higher storage modulus (1390.90 MPa), loss modulus (413.05 MPa), and crystallinity (40.5%). This study concludes 23 wt.% fibre loading as optimum reinforcement for the studied epoxy polymer.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-023-04819-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotechnology ; Chemical synthesis ; Dynamic mechanical analysis ; Energy ; Fiber composites ; Fiber reinforced polymers ; Fiber reinforcement ; Fourier transforms ; Infrared analysis ; Loss modulus ; Microorganisms ; Original Article ; Physical properties ; Polymer matrix composites ; Polymers ; Renewable and Green Energy ; Retting ; Storage modulus ; Thermal analysis ; Thermal stability ; Thermodynamic properties ; Thermogravimetric analysis ; Void fraction ; Water absorption</subject><ispartof>Biomass conversion and biorefinery, 2024, Vol.14 (23), p.30415-30434</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-460b68e344898162e325f0ccd03a304bccc596d0b7ee556f729248abdd645b643</citedby><cites>FETCH-LOGICAL-c319t-460b68e344898162e325f0ccd03a304bccc596d0b7ee556f729248abdd645b643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13399-023-04819-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13399-023-04819-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mudoi, Manash Protim</creatorcontrib><creatorcontrib>Sinha, Shishir</creatorcontrib><creatorcontrib>Parthasarthy, Vijay</creatorcontrib><title>Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortication methods. Cellulose (&gt;86 wt.%) is the principal constituent of this fibre. In this study, epoxy-based composites were prepared with 0, 15, 20, 23, 25, 27, and 30 wt.% fibre loadings and investigated the influence of fibre content on thermal, mechanical, and physical properties. The samples were analysed with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, universal testing machine, dynamic mechanical analysis, thermogravimetric analysis, density and void fraction measurement, and water absorption test. It was found that mechanical and thermal properties were increased with the increase in fibre loadings, attaining the maximum values at 23 wt.%, which signified the improvement in mechanical and thermal properties with fibre reinforcement. The fibre fraction of 23 wt.% resulted in the higher tensile (57.69 MPa), flexural (98.60 MPa), impact (0.689 J) strength, better thermal stability, higher storage modulus (1390.90 MPa), loss modulus (413.05 MPa), and crystallinity (40.5%). This study concludes 23 wt.% fibre loading as optimum reinforcement for the studied epoxy polymer.</description><subject>Biotechnology</subject><subject>Chemical synthesis</subject><subject>Dynamic mechanical analysis</subject><subject>Energy</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fiber reinforcement</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Loss modulus</subject><subject>Microorganisms</subject><subject>Original Article</subject><subject>Physical properties</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Renewable and Green Energy</subject><subject>Retting</subject><subject>Storage modulus</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Void fraction</subject><subject>Water absorption</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CyxJbA2OM4CTtU8ZIqsYG15TgTmiov7HTRv8clCHas5i7OvRodxi4F3AiA7DYIxKJIQGICKhcxnbCFFAUkOpd4-ptFes5WIewAIpphjrBg9rnpbGsPtuc9TVNLvG5KT4mnpq8H76ji49AeOvLcDd04hGaiO275uD2Extn2mnfktrafs-0rPm3Jx8mYbRuZcMHOatsGWv3cJXt_fHhbPyeb16eX9f0mcSiKKVEaSp0TKpUXudCSUKY1OFcBWgRVOufSQldQZkRpqutMFlLltqwqrdJSK1yyq3l39MPnnsJkdsPexyeCQYEymkjFkZIz5fwQgqfajD4a8AcjwBxtmtmmiYrMt00DsYRzKUS4_yD_N_1P6wstLney</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mudoi, Manash Protim</creator><creator>Sinha, Shishir</creator><creator>Parthasarthy, Vijay</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis</title><author>Mudoi, Manash Protim ; Sinha, Shishir ; Parthasarthy, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-460b68e344898162e325f0ccd03a304bccc596d0b7ee556f729248abdd645b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biotechnology</topic><topic>Chemical synthesis</topic><topic>Dynamic mechanical analysis</topic><topic>Energy</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fiber reinforcement</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Loss modulus</topic><topic>Microorganisms</topic><topic>Original Article</topic><topic>Physical properties</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Renewable and Green Energy</topic><topic>Retting</topic><topic>Storage modulus</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Void fraction</topic><topic>Water absorption</topic><toplevel>online_resources</toplevel><creatorcontrib>Mudoi, Manash Protim</creatorcontrib><creatorcontrib>Sinha, Shishir</creatorcontrib><creatorcontrib>Parthasarthy, Vijay</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mudoi, Manash Protim</au><au>Sinha, Shishir</au><au>Parthasarthy, Vijay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2024</date><risdate>2024</risdate><volume>14</volume><issue>23</issue><spage>30415</spage><epage>30434</epage><pages>30415-30434</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>Himalayan nettle fibre is abundantly available in the Himalayan regions of India and can effectively replace synthetic fibre in epoxy-based polymer composite synthesis. Fibre from nettle plants can be extracted by water, dew, controlled microbial retting, enzymatic treatment, and mechanical decortication methods. Cellulose (&gt;86 wt.%) is the principal constituent of this fibre. In this study, epoxy-based composites were prepared with 0, 15, 20, 23, 25, 27, and 30 wt.% fibre loadings and investigated the influence of fibre content on thermal, mechanical, and physical properties. The samples were analysed with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, universal testing machine, dynamic mechanical analysis, thermogravimetric analysis, density and void fraction measurement, and water absorption test. It was found that mechanical and thermal properties were increased with the increase in fibre loadings, attaining the maximum values at 23 wt.%, which signified the improvement in mechanical and thermal properties with fibre reinforcement. The fibre fraction of 23 wt.% resulted in the higher tensile (57.69 MPa), flexural (98.60 MPa), impact (0.689 J) strength, better thermal stability, higher storage modulus (1390.90 MPa), loss modulus (413.05 MPa), and crystallinity (40.5%). This study concludes 23 wt.% fibre loading as optimum reinforcement for the studied epoxy polymer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-023-04819-0</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-6815
ispartof Biomass conversion and biorefinery, 2024, Vol.14 (23), p.30415-30434
issn 2190-6815
2190-6823
language eng
recordid cdi_proquest_journals_3132823514
source SpringerLink Journals - AutoHoldings
subjects Biotechnology
Chemical synthesis
Dynamic mechanical analysis
Energy
Fiber composites
Fiber reinforced polymers
Fiber reinforcement
Fourier transforms
Infrared analysis
Loss modulus
Microorganisms
Original Article
Physical properties
Polymer matrix composites
Polymers
Renewable and Green Energy
Retting
Storage modulus
Thermal analysis
Thermal stability
Thermodynamic properties
Thermogravimetric analysis
Void fraction
Water absorption
title Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Himalayan%20nettle%20fibre-reinforced%20polymer%20composite:%20a%20physical,%20mechanical,%20and%20thermal%20analysis&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Mudoi,%20Manash%20Protim&rft.date=2024&rft.volume=14&rft.issue=23&rft.spage=30415&rft.epage=30434&rft.pages=30415-30434&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-023-04819-0&rft_dat=%3Cproquest_cross%3E3132823514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132823514&rft_id=info:pmid/&rfr_iscdi=true