Mediating Modes of Thought: LLM's for design scripting

Architects adopt visual scripting and parametric design tools to explore more expansive design spaces (Coates, 2010), refine their thinking about the geometric logic of their design (Woodbury, 2010), and overcome conventional software limitations (Burry, 2011). Despite two decades of effort to make...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Rietschel, Moritz, Guo, Fang, Steinfeld, Kyle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rietschel, Moritz
Guo, Fang
Steinfeld, Kyle
description Architects adopt visual scripting and parametric design tools to explore more expansive design spaces (Coates, 2010), refine their thinking about the geometric logic of their design (Woodbury, 2010), and overcome conventional software limitations (Burry, 2011). Despite two decades of effort to make design scripting more accessible, a disconnect between a designer's free ways of thinking and the rigidity of algorithms remains (Burry, 2011). Recent developments in Large Language Models (LLMs) suggest this might soon change, as LLMs encode a general understanding of human context and exhibit the capacity to produce geometric logic. This project speculates that if LLMs can effectively mediate between user intent and algorithms, they become a powerful tool to make scripting in design more widespread and fun. We explore if such systems can interpret natural language prompts to assemble geometric operations relevant to computational design scripting. In the system, multiple layers of LLM agents are configured with specific context to infer the user intent and construct a sequential logic. Given a user's high-level text prompt, a geometric description is created, distilled into a sequence of logic operations, and mapped to software-specific commands. The completed script is constructed in the user's visual programming interface. The system succeeds in generating complete visual scripts up to a certain complexity but fails beyond this complexity threshold. It shows how LLMs can make design scripting much more aligned with human creativity and thought. Future research should explore conversational interactions, expand to multimodal inputs and outputs, and assess the performance of these tools.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3132696027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132696027</sourcerecordid><originalsourceid>FETCH-proquest_journals_31326960273</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw801NyUwsycxLV_DNT0ktVshPUwjJyC9NzyixUvDx8VUvVkjLL1IAymSm5ykUJxdlFoAU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvLGhsZGZpZmBkbkxcaoAYTI0eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132696027</pqid></control><display><type>article</type><title>Mediating Modes of Thought: LLM's for design scripting</title><source>Free E- Journals</source><creator>Rietschel, Moritz ; Guo, Fang ; Steinfeld, Kyle</creator><creatorcontrib>Rietschel, Moritz ; Guo, Fang ; Steinfeld, Kyle</creatorcontrib><description>Architects adopt visual scripting and parametric design tools to explore more expansive design spaces (Coates, 2010), refine their thinking about the geometric logic of their design (Woodbury, 2010), and overcome conventional software limitations (Burry, 2011). Despite two decades of effort to make design scripting more accessible, a disconnect between a designer's free ways of thinking and the rigidity of algorithms remains (Burry, 2011). Recent developments in Large Language Models (LLMs) suggest this might soon change, as LLMs encode a general understanding of human context and exhibit the capacity to produce geometric logic. This project speculates that if LLMs can effectively mediate between user intent and algorithms, they become a powerful tool to make scripting in design more widespread and fun. We explore if such systems can interpret natural language prompts to assemble geometric operations relevant to computational design scripting. In the system, multiple layers of LLM agents are configured with specific context to infer the user intent and construct a sequential logic. Given a user's high-level text prompt, a geometric description is created, distilled into a sequence of logic operations, and mapped to software-specific commands. The completed script is constructed in the user's visual programming interface. The system succeeds in generating complete visual scripts up to a certain complexity but fails beyond this complexity threshold. It shows how LLMs can make design scripting much more aligned with human creativity and thought. Future research should explore conversational interactions, expand to multimodal inputs and outputs, and assess the performance of these tools.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Complexity ; Context ; Design ; Design standards ; Large language models ; Logic ; Natural language processing ; Software</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rietschel, Moritz</creatorcontrib><creatorcontrib>Guo, Fang</creatorcontrib><creatorcontrib>Steinfeld, Kyle</creatorcontrib><title>Mediating Modes of Thought: LLM's for design scripting</title><title>arXiv.org</title><description>Architects adopt visual scripting and parametric design tools to explore more expansive design spaces (Coates, 2010), refine their thinking about the geometric logic of their design (Woodbury, 2010), and overcome conventional software limitations (Burry, 2011). Despite two decades of effort to make design scripting more accessible, a disconnect between a designer's free ways of thinking and the rigidity of algorithms remains (Burry, 2011). Recent developments in Large Language Models (LLMs) suggest this might soon change, as LLMs encode a general understanding of human context and exhibit the capacity to produce geometric logic. This project speculates that if LLMs can effectively mediate between user intent and algorithms, they become a powerful tool to make scripting in design more widespread and fun. We explore if such systems can interpret natural language prompts to assemble geometric operations relevant to computational design scripting. In the system, multiple layers of LLM agents are configured with specific context to infer the user intent and construct a sequential logic. Given a user's high-level text prompt, a geometric description is created, distilled into a sequence of logic operations, and mapped to software-specific commands. The completed script is constructed in the user's visual programming interface. The system succeeds in generating complete visual scripts up to a certain complexity but fails beyond this complexity threshold. It shows how LLMs can make design scripting much more aligned with human creativity and thought. Future research should explore conversational interactions, expand to multimodal inputs and outputs, and assess the performance of these tools.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Context</subject><subject>Design</subject><subject>Design standards</subject><subject>Large language models</subject><subject>Logic</subject><subject>Natural language processing</subject><subject>Software</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw801NyUwsycxLV_DNT0ktVshPUwjJyC9NzyixUvDx8VUvVkjLL1IAymSm5ykUJxdlFoAU8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvLGhsZGZpZmBkbkxcaoAYTI0eA</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Rietschel, Moritz</creator><creator>Guo, Fang</creator><creator>Steinfeld, Kyle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241203</creationdate><title>Mediating Modes of Thought: LLM's for design scripting</title><author>Rietschel, Moritz ; Guo, Fang ; Steinfeld, Kyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31326960273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Context</topic><topic>Design</topic><topic>Design standards</topic><topic>Large language models</topic><topic>Logic</topic><topic>Natural language processing</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Rietschel, Moritz</creatorcontrib><creatorcontrib>Guo, Fang</creatorcontrib><creatorcontrib>Steinfeld, Kyle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rietschel, Moritz</au><au>Guo, Fang</au><au>Steinfeld, Kyle</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mediating Modes of Thought: LLM's for design scripting</atitle><jtitle>arXiv.org</jtitle><date>2024-12-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Architects adopt visual scripting and parametric design tools to explore more expansive design spaces (Coates, 2010), refine their thinking about the geometric logic of their design (Woodbury, 2010), and overcome conventional software limitations (Burry, 2011). Despite two decades of effort to make design scripting more accessible, a disconnect between a designer's free ways of thinking and the rigidity of algorithms remains (Burry, 2011). Recent developments in Large Language Models (LLMs) suggest this might soon change, as LLMs encode a general understanding of human context and exhibit the capacity to produce geometric logic. This project speculates that if LLMs can effectively mediate between user intent and algorithms, they become a powerful tool to make scripting in design more widespread and fun. We explore if such systems can interpret natural language prompts to assemble geometric operations relevant to computational design scripting. In the system, multiple layers of LLM agents are configured with specific context to infer the user intent and construct a sequential logic. Given a user's high-level text prompt, a geometric description is created, distilled into a sequence of logic operations, and mapped to software-specific commands. The completed script is constructed in the user's visual programming interface. The system succeeds in generating complete visual scripts up to a certain complexity but fails beyond this complexity threshold. It shows how LLMs can make design scripting much more aligned with human creativity and thought. Future research should explore conversational interactions, expand to multimodal inputs and outputs, and assess the performance of these tools.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3132696027
source Free E- Journals
subjects Algorithms
Complexity
Context
Design
Design standards
Large language models
Logic
Natural language processing
Software
title Mediating Modes of Thought: LLM's for design scripting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mediating%20Modes%20of%20Thought:%20LLM's%20for%20design%20scripting&rft.jtitle=arXiv.org&rft.au=Rietschel,%20Moritz&rft.date=2024-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3132696027%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132696027&rft_id=info:pmid/&rfr_iscdi=true