Energy-efficient distributed estimation algorithm for wireless sensor networks based on covariance intersection with eigendecomposition

The paper introduces and assesses the Eigenvalue Covariance Intersection (EVCI) algorithm for data fusion in Wireless Sensor Networks. The EVCI aims to enhance information fusion efficiency, reduce transmitted data, and potentially extend network lifespan. By conducting the eigendecomposition of cov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrology and Measurement systems 2024-11, Vol.31 (3), p.465-480
Hauptverfasser: Pasek, Przemysław, Kaniewski, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 3
container_start_page 465
container_title Metrology and Measurement systems
container_volume 31
creator Pasek, Przemysław
Kaniewski, Piotr
description The paper introduces and assesses the Eigenvalue Covariance Intersection (EVCI) algorithm for data fusion in Wireless Sensor Networks. The EVCI aims to enhance information fusion efficiency, reduce transmitted data, and potentially extend network lifespan. By conducting the eigendecomposition of covariance matrices, the EVCI evaluates the utility of eigenvectors and strategically employs only those positively impacting estimate accuracy. Through simulations and comparisons with the Covariance Intersection (CI) algorithm, the study demonstrates EVCI’s ability to maintain accuracy alongside with significant energy savings. The paper provides insights into popular data fusion algorithms, the concept of the EVCI, used formulas, and selected simulation results.
doi_str_mv 10.24425/mms.2024.150290
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132566853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132566853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-df33758cb07bacdbf2803cb4b1ffb854a10e524f34c6a84e9ee23dc35a954b603</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhSdGEwmyd9nE9WCfw8zSEHwkJG503bSdWywyLbZFwi_wb1vAhav7yLnn5H5VdUvwlHJOxf0wpCnFlE-JwLTDF9WIMoxr0nFy-a-_riYprTHGRLQzTMmo-ll4iKtDDdY648Bn1LuUo9O7DD2ClN2gsgseqc0qRJc_BmRDRHsXYQMpoQQ-ldlD3of4mZBWqdwVvQnfKjrlDSDnM8QE5uSzLx4I3Ap8DyYM25DccX9TXVm1STD5q-Pq_XHxNn-ul69PL_OHZW1I1-S6t4zNRGs0nmllem1pi5nRXBNrdSu4IhgE5ZZx06iWQwdAWW-YUJ3gusFsXN2dfbcxfO3Kf3IddtGXSMkIo6JpWsGKCp9VJoaUIli5jQVEPEiC5Ym4LMTlkbg8E2e_e7l5Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132566853</pqid></control><display><type>article</type><title>Energy-efficient distributed estimation algorithm for wireless sensor networks based on covariance intersection with eigendecomposition</title><source>DOAJ Directory of Open Access Journals</source><creator>Pasek, Przemysław ; Kaniewski, Piotr</creator><creatorcontrib>Pasek, Przemysław ; Kaniewski, Piotr</creatorcontrib><description>The paper introduces and assesses the Eigenvalue Covariance Intersection (EVCI) algorithm for data fusion in Wireless Sensor Networks. The EVCI aims to enhance information fusion efficiency, reduce transmitted data, and potentially extend network lifespan. By conducting the eigendecomposition of covariance matrices, the EVCI evaluates the utility of eigenvectors and strategically employs only those positively impacting estimate accuracy. Through simulations and comparisons with the Covariance Intersection (CI) algorithm, the study demonstrates EVCI’s ability to maintain accuracy alongside with significant energy savings. The paper provides insights into popular data fusion algorithms, the concept of the EVCI, used formulas, and selected simulation results.</description><identifier>ISSN: 2300-1941</identifier><identifier>ISSN: 2080-9050</identifier><identifier>EISSN: 2300-1941</identifier><identifier>DOI: 10.24425/mms.2024.150290</identifier><language>eng</language><publisher>Warsaw: Polish Academy of Sciences</publisher><subject>Accuracy ; Algorithms ; Cost control ; Covariance matrix ; Data integration ; Data transmission ; Eigenvalues ; Eigenvectors ; Energy consumption ; Energy efficiency ; Multisensor fusion ; Random variables ; Sensors ; Wireless sensor networks</subject><ispartof>Metrology and Measurement systems, 2024-11, Vol.31 (3), p.465-480</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Pasek, Przemysław</creatorcontrib><creatorcontrib>Kaniewski, Piotr</creatorcontrib><title>Energy-efficient distributed estimation algorithm for wireless sensor networks based on covariance intersection with eigendecomposition</title><title>Metrology and Measurement systems</title><description>The paper introduces and assesses the Eigenvalue Covariance Intersection (EVCI) algorithm for data fusion in Wireless Sensor Networks. The EVCI aims to enhance information fusion efficiency, reduce transmitted data, and potentially extend network lifespan. By conducting the eigendecomposition of covariance matrices, the EVCI evaluates the utility of eigenvectors and strategically employs only those positively impacting estimate accuracy. Through simulations and comparisons with the Covariance Intersection (CI) algorithm, the study demonstrates EVCI’s ability to maintain accuracy alongside with significant energy savings. The paper provides insights into popular data fusion algorithms, the concept of the EVCI, used formulas, and selected simulation results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cost control</subject><subject>Covariance matrix</subject><subject>Data integration</subject><subject>Data transmission</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Multisensor fusion</subject><subject>Random variables</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>2300-1941</issn><issn>2080-9050</issn><issn>2300-1941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtPAjEUhSdGEwmyd9nE9WCfw8zSEHwkJG503bSdWywyLbZFwi_wb1vAhav7yLnn5H5VdUvwlHJOxf0wpCnFlE-JwLTDF9WIMoxr0nFy-a-_riYprTHGRLQzTMmo-ll4iKtDDdY648Bn1LuUo9O7DD2ClN2gsgseqc0qRJc_BmRDRHsXYQMpoQQ-ldlD3of4mZBWqdwVvQnfKjrlDSDnM8QE5uSzLx4I3Ap8DyYM25DccX9TXVm1STD5q-Pq_XHxNn-ul69PL_OHZW1I1-S6t4zNRGs0nmllem1pi5nRXBNrdSu4IhgE5ZZx06iWQwdAWW-YUJ3gusFsXN2dfbcxfO3Kf3IddtGXSMkIo6JpWsGKCp9VJoaUIli5jQVEPEiC5Ym4LMTlkbg8E2e_e7l5Dw</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Pasek, Przemysław</creator><creator>Kaniewski, Piotr</creator><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241121</creationdate><title>Energy-efficient distributed estimation algorithm for wireless sensor networks based on covariance intersection with eigendecomposition</title><author>Pasek, Przemysław ; Kaniewski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-df33758cb07bacdbf2803cb4b1ffb854a10e524f34c6a84e9ee23dc35a954b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cost control</topic><topic>Covariance matrix</topic><topic>Data integration</topic><topic>Data transmission</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Multisensor fusion</topic><topic>Random variables</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasek, Przemysław</creatorcontrib><creatorcontrib>Kaniewski, Piotr</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Metrology and Measurement systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasek, Przemysław</au><au>Kaniewski, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-efficient distributed estimation algorithm for wireless sensor networks based on covariance intersection with eigendecomposition</atitle><jtitle>Metrology and Measurement systems</jtitle><date>2024-11-21</date><risdate>2024</risdate><volume>31</volume><issue>3</issue><spage>465</spage><epage>480</epage><pages>465-480</pages><issn>2300-1941</issn><issn>2080-9050</issn><eissn>2300-1941</eissn><abstract>The paper introduces and assesses the Eigenvalue Covariance Intersection (EVCI) algorithm for data fusion in Wireless Sensor Networks. The EVCI aims to enhance information fusion efficiency, reduce transmitted data, and potentially extend network lifespan. By conducting the eigendecomposition of covariance matrices, the EVCI evaluates the utility of eigenvectors and strategically employs only those positively impacting estimate accuracy. Through simulations and comparisons with the Covariance Intersection (CI) algorithm, the study demonstrates EVCI’s ability to maintain accuracy alongside with significant energy savings. The paper provides insights into popular data fusion algorithms, the concept of the EVCI, used formulas, and selected simulation results.</abstract><cop>Warsaw</cop><pub>Polish Academy of Sciences</pub><doi>10.24425/mms.2024.150290</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2300-1941
ispartof Metrology and Measurement systems, 2024-11, Vol.31 (3), p.465-480
issn 2300-1941
2080-9050
2300-1941
language eng
recordid cdi_proquest_journals_3132566853
source DOAJ Directory of Open Access Journals
subjects Accuracy
Algorithms
Cost control
Covariance matrix
Data integration
Data transmission
Eigenvalues
Eigenvectors
Energy consumption
Energy efficiency
Multisensor fusion
Random variables
Sensors
Wireless sensor networks
title Energy-efficient distributed estimation algorithm for wireless sensor networks based on covariance intersection with eigendecomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-efficient%20distributed%20estimation%20algorithm%20for%20wireless%20sensor%20networks%20based%20on%20covariance%20intersection%20with%20eigendecomposition&rft.jtitle=Metrology%20and%20Measurement%20systems&rft.au=Pasek,%20Przemys%C5%82aw&rft.date=2024-11-21&rft.volume=31&rft.issue=3&rft.spage=465&rft.epage=480&rft.pages=465-480&rft.issn=2300-1941&rft.eissn=2300-1941&rft_id=info:doi/10.24425/mms.2024.150290&rft_dat=%3Cproquest_cross%3E3132566853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132566853&rft_id=info:pmid/&rfr_iscdi=true