Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode
Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures....
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-11, Vol.34 (48), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Xu, Tiezhu Wang, Di Zhang, Miaoran Yao, Tengyu Cui, Zhaodi Shen, Laifa |
description | Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm−1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H2SO4//MoO3‐x) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg−1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions.
Proton‐rich electrolytes with ultralow freezing point and high conductivity are developed, combined with open framework‐structured Prussian blue analogous electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor with remarkable voltage window and energy‐power density at −80 °C. |
doi_str_mv | 10.1002/adfm.202408465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132554045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132554045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2725-271d0cc6b0c2b38c24dbe0279ff88a24555bf15d193eea3758c311df2eb0fa743</originalsourceid><addsrcrecordid>eNqFkbtOw0AURC0EEiHQUq9EA0XCPry2U0Z5EKQgIpRIdNZ69zpx5HjDeq3IHSV0iJaGgg_gG_Ip-RIchUdJdedKZ2aKcZxTgpsEY3opVLxoUkxdHLge33NqxCNeg2Ea7P9qcn_oHOX5HGPi-8ytOW-T1BqR6tXm8WUMiyUYYQsD6Hzz_IE2T68BXr-vPzsXaGS01Rka5VAoLcVSyMRqg1aJnaFBMp2hkV6BqVJ6GZhpibqQ5YktUS8TUQoKRSUaiyTVptK7rIq9S-QM9VKQ1ui0tIBEpn5-BcfOQSzSHE6-b92Z9HvjzqAxvL267rSHDUl9yhvUJwpL6UVY0ogFkroqAkz9VhwHgaAu5zyKCVekxQAE83kgGSEqphDhWPguqztnu9yl0Q8F5Dac68JkVWXICKOcu9jlFdXcUdLoPDcQh0uTLIQpQ4LD7QDhdoDwd4DK0NoZVkkK5T902O72b_68X-rxkk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132554045</pqid></control><display><type>article</type><title>Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Tiezhu ; Wang, Di ; Zhang, Miaoran ; Yao, Tengyu ; Cui, Zhaodi ; Shen, Laifa</creator><creatorcontrib>Xu, Tiezhu ; Wang, Di ; Zhang, Miaoran ; Yao, Tengyu ; Cui, Zhaodi ; Shen, Laifa</creatorcontrib><description>Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm−1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H2SO4//MoO3‐x) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg−1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions.
Proton‐rich electrolytes with ultralow freezing point and high conductivity are developed, combined with open framework‐structured Prussian blue analogous electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor with remarkable voltage window and energy‐power density at −80 °C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202408465</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Binding sites ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electron transfer ; Energy storage ; Energy technology ; Freezing ; high energy density ; hydrogen bond ; Hydrogen bonds ; Ion currents ; Low temperature ; Melting points ; Pigments ; proton pseudocapacitor ; Protons ; proton‐rich electrolyte ; Structural analysis ; Sulfuric acid ; Temperature ; Temperature dependence ; ultralow temperature</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (48), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2725-271d0cc6b0c2b38c24dbe0279ff88a24555bf15d193eea3758c311df2eb0fa743</cites><orcidid>0000-0001-5114-6446 ; 0009-0005-3000-2247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202408465$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202408465$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xu, Tiezhu</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Zhang, Miaoran</creatorcontrib><creatorcontrib>Yao, Tengyu</creatorcontrib><creatorcontrib>Cui, Zhaodi</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><title>Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode</title><title>Advanced functional materials</title><description>Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm−1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H2SO4//MoO3‐x) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg−1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions.
Proton‐rich electrolytes with ultralow freezing point and high conductivity are developed, combined with open framework‐structured Prussian blue analogous electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor with remarkable voltage window and energy‐power density at −80 °C.</description><subject>Binding sites</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Energy technology</subject><subject>Freezing</subject><subject>high energy density</subject><subject>hydrogen bond</subject><subject>Hydrogen bonds</subject><subject>Ion currents</subject><subject>Low temperature</subject><subject>Melting points</subject><subject>Pigments</subject><subject>proton pseudocapacitor</subject><subject>Protons</subject><subject>proton‐rich electrolyte</subject><subject>Structural analysis</subject><subject>Sulfuric acid</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>ultralow temperature</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOw0AURC0EEiHQUq9EA0XCPry2U0Z5EKQgIpRIdNZ69zpx5HjDeq3IHSV0iJaGgg_gG_Ip-RIchUdJdedKZ2aKcZxTgpsEY3opVLxoUkxdHLge33NqxCNeg2Ea7P9qcn_oHOX5HGPi-8ytOW-T1BqR6tXm8WUMiyUYYQsD6Hzz_IE2T68BXr-vPzsXaGS01Rka5VAoLcVSyMRqg1aJnaFBMp2hkV6BqVJ6GZhpibqQ5YktUS8TUQoKRSUaiyTVptK7rIq9S-QM9VKQ1ui0tIBEpn5-BcfOQSzSHE6-b92Z9HvjzqAxvL267rSHDUl9yhvUJwpL6UVY0ogFkroqAkz9VhwHgaAu5zyKCVekxQAE83kgGSEqphDhWPguqztnu9yl0Q8F5Dac68JkVWXICKOcu9jlFdXcUdLoPDcQh0uTLIQpQ4LD7QDhdoDwd4DK0NoZVkkK5T902O72b_68X-rxkk4</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Xu, Tiezhu</creator><creator>Wang, Di</creator><creator>Zhang, Miaoran</creator><creator>Yao, Tengyu</creator><creator>Cui, Zhaodi</creator><creator>Shen, Laifa</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5114-6446</orcidid><orcidid>https://orcid.org/0009-0005-3000-2247</orcidid></search><sort><creationdate>20241101</creationdate><title>Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode</title><author>Xu, Tiezhu ; Wang, Di ; Zhang, Miaoran ; Yao, Tengyu ; Cui, Zhaodi ; Shen, Laifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2725-271d0cc6b0c2b38c24dbe0279ff88a24555bf15d193eea3758c311df2eb0fa743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding sites</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Energy technology</topic><topic>Freezing</topic><topic>high energy density</topic><topic>hydrogen bond</topic><topic>Hydrogen bonds</topic><topic>Ion currents</topic><topic>Low temperature</topic><topic>Melting points</topic><topic>Pigments</topic><topic>proton pseudocapacitor</topic><topic>Protons</topic><topic>proton‐rich electrolyte</topic><topic>Structural analysis</topic><topic>Sulfuric acid</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>ultralow temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tiezhu</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Zhang, Miaoran</creatorcontrib><creatorcontrib>Yao, Tengyu</creatorcontrib><creatorcontrib>Cui, Zhaodi</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tiezhu</au><au>Wang, Di</au><au>Zhang, Miaoran</au><au>Yao, Tengyu</au><au>Cui, Zhaodi</au><au>Shen, Laifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>48</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm−1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H2SO4//MoO3‐x) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg−1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions.
Proton‐rich electrolytes with ultralow freezing point and high conductivity are developed, combined with open framework‐structured Prussian blue analogous electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor with remarkable voltage window and energy‐power density at −80 °C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202408465</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5114-6446</orcidid><orcidid>https://orcid.org/0009-0005-3000-2247</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-11, Vol.34 (48), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3132554045 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Binding sites Electrochemical analysis Electrodes Electrolytes Electron transfer Energy storage Energy technology Freezing high energy density hydrogen bond Hydrogen bonds Ion currents Low temperature Melting points Pigments proton pseudocapacitor Protons proton‐rich electrolyte Structural analysis Sulfuric acid Temperature Temperature dependence ultralow temperature |
title | Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%E2%80%90Temperature%20(%E2%89%A4%20%E2%88%9280%C2%A0%C2%B0C)%20Proton%20Pseudocapacitor%20with%20High%20Power%E2%80%90Energy%20Density%20Enabled%20by%20Tailored%20Proton%E2%80%90Rich%20Electrolyte%20and%20Electrode&rft.jtitle=Advanced%20functional%20materials&rft.au=Xu,%20Tiezhu&rft.date=2024-11-01&rft.volume=34&rft.issue=48&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202408465&rft_dat=%3Cproquest_cross%3E3132554045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132554045&rft_id=info:pmid/&rfr_iscdi=true |