Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode

Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11, Vol.34 (48), p.n/a
Hauptverfasser: Xu, Tiezhu, Wang, Di, Zhang, Miaoran, Yao, Tengyu, Cui, Zhaodi, Shen, Laifa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page
container_title Advanced functional materials
container_volume 34
creator Xu, Tiezhu
Wang, Di
Zhang, Miaoran
Yao, Tengyu
Cui, Zhaodi
Shen, Laifa
description Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm−1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H2SO4//MoO3‐x) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg−1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions. Proton‐rich electrolytes with ultralow freezing point and high conductivity are developed, combined with open framework‐structured Prussian blue analogous electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor with remarkable voltage window and energy‐power density at −80 °C.
doi_str_mv 10.1002/adfm.202408465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132554045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132554045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2725-271d0cc6b0c2b38c24dbe0279ff88a24555bf15d193eea3758c311df2eb0fa743</originalsourceid><addsrcrecordid>eNqFkbtOw0AURC0EEiHQUq9EA0XCPry2U0Z5EKQgIpRIdNZ69zpx5HjDeq3IHSV0iJaGgg_gG_Ip-RIchUdJdedKZ2aKcZxTgpsEY3opVLxoUkxdHLge33NqxCNeg2Ea7P9qcn_oHOX5HGPi-8ytOW-T1BqR6tXm8WUMiyUYYQsD6Hzz_IE2T68BXr-vPzsXaGS01Rka5VAoLcVSyMRqg1aJnaFBMp2hkV6BqVJ6GZhpibqQ5YktUS8TUQoKRSUaiyTVptK7rIq9S-QM9VKQ1ui0tIBEpn5-BcfOQSzSHE6-b92Z9HvjzqAxvL267rSHDUl9yhvUJwpL6UVY0ogFkroqAkz9VhwHgaAu5zyKCVekxQAE83kgGSEqphDhWPguqztnu9yl0Q8F5Dac68JkVWXICKOcu9jlFdXcUdLoPDcQh0uTLIQpQ4LD7QDhdoDwd4DK0NoZVkkK5T902O72b_68X-rxkk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132554045</pqid></control><display><type>article</type><title>Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Tiezhu ; Wang, Di ; Zhang, Miaoran ; Yao, Tengyu ; Cui, Zhaodi ; Shen, Laifa</creator><creatorcontrib>Xu, Tiezhu ; Wang, Di ; Zhang, Miaoran ; Yao, Tengyu ; Cui, Zhaodi ; Shen, Laifa</creatorcontrib><description>Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm−1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H2SO4//MoO3‐x) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg−1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions. Proton‐rich electrolytes with ultralow freezing point and high conductivity are developed, combined with open framework‐structured Prussian blue analogous electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor with remarkable voltage window and energy‐power density at −80 °C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202408465</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Binding sites ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electron transfer ; Energy storage ; Energy technology ; Freezing ; high energy density ; hydrogen bond ; Hydrogen bonds ; Ion currents ; Low temperature ; Melting points ; Pigments ; proton pseudocapacitor ; Protons ; proton‐rich electrolyte ; Structural analysis ; Sulfuric acid ; Temperature ; Temperature dependence ; ultralow temperature</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (48), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2725-271d0cc6b0c2b38c24dbe0279ff88a24555bf15d193eea3758c311df2eb0fa743</cites><orcidid>0000-0001-5114-6446 ; 0009-0005-3000-2247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202408465$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202408465$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xu, Tiezhu</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Zhang, Miaoran</creatorcontrib><creatorcontrib>Yao, Tengyu</creatorcontrib><creatorcontrib>Cui, Zhaodi</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><title>Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode</title><title>Advanced functional materials</title><description>Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm−1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H2SO4//MoO3‐x) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg−1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions. Proton‐rich electrolytes with ultralow freezing point and high conductivity are developed, combined with open framework‐structured Prussian blue analogous electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor with remarkable voltage window and energy‐power density at −80 °C.</description><subject>Binding sites</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Energy technology</subject><subject>Freezing</subject><subject>high energy density</subject><subject>hydrogen bond</subject><subject>Hydrogen bonds</subject><subject>Ion currents</subject><subject>Low temperature</subject><subject>Melting points</subject><subject>Pigments</subject><subject>proton pseudocapacitor</subject><subject>Protons</subject><subject>proton‐rich electrolyte</subject><subject>Structural analysis</subject><subject>Sulfuric acid</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>ultralow temperature</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOw0AURC0EEiHQUq9EA0XCPry2U0Z5EKQgIpRIdNZ69zpx5HjDeq3IHSV0iJaGgg_gG_Ip-RIchUdJdedKZ2aKcZxTgpsEY3opVLxoUkxdHLge33NqxCNeg2Ea7P9qcn_oHOX5HGPi-8ytOW-T1BqR6tXm8WUMiyUYYQsD6Hzz_IE2T68BXr-vPzsXaGS01Rka5VAoLcVSyMRqg1aJnaFBMp2hkV6BqVJ6GZhpibqQ5YktUS8TUQoKRSUaiyTVptK7rIq9S-QM9VKQ1ui0tIBEpn5-BcfOQSzSHE6-b92Z9HvjzqAxvL267rSHDUl9yhvUJwpL6UVY0ogFkroqAkz9VhwHgaAu5zyKCVekxQAE83kgGSEqphDhWPguqztnu9yl0Q8F5Dac68JkVWXICKOcu9jlFdXcUdLoPDcQh0uTLIQpQ4LD7QDhdoDwd4DK0NoZVkkK5T902O72b_68X-rxkk4</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Xu, Tiezhu</creator><creator>Wang, Di</creator><creator>Zhang, Miaoran</creator><creator>Yao, Tengyu</creator><creator>Cui, Zhaodi</creator><creator>Shen, Laifa</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5114-6446</orcidid><orcidid>https://orcid.org/0009-0005-3000-2247</orcidid></search><sort><creationdate>20241101</creationdate><title>Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode</title><author>Xu, Tiezhu ; Wang, Di ; Zhang, Miaoran ; Yao, Tengyu ; Cui, Zhaodi ; Shen, Laifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2725-271d0cc6b0c2b38c24dbe0279ff88a24555bf15d193eea3758c311df2eb0fa743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding sites</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Energy technology</topic><topic>Freezing</topic><topic>high energy density</topic><topic>hydrogen bond</topic><topic>Hydrogen bonds</topic><topic>Ion currents</topic><topic>Low temperature</topic><topic>Melting points</topic><topic>Pigments</topic><topic>proton pseudocapacitor</topic><topic>Protons</topic><topic>proton‐rich electrolyte</topic><topic>Structural analysis</topic><topic>Sulfuric acid</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>ultralow temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tiezhu</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Zhang, Miaoran</creatorcontrib><creatorcontrib>Yao, Tengyu</creatorcontrib><creatorcontrib>Cui, Zhaodi</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tiezhu</au><au>Wang, Di</au><au>Zhang, Miaoran</au><au>Yao, Tengyu</au><au>Cui, Zhaodi</au><au>Shen, Laifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>48</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm−1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H2SO4//MoO3‐x) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg−1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions. Proton‐rich electrolytes with ultralow freezing point and high conductivity are developed, combined with open framework‐structured Prussian blue analogous electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor with remarkable voltage window and energy‐power density at −80 °C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202408465</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5114-6446</orcidid><orcidid>https://orcid.org/0009-0005-3000-2247</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11, Vol.34 (48), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3132554045
source Wiley Online Library Journals Frontfile Complete
subjects Binding sites
Electrochemical analysis
Electrodes
Electrolytes
Electron transfer
Energy storage
Energy technology
Freezing
high energy density
hydrogen bond
Hydrogen bonds
Ion currents
Low temperature
Melting points
Pigments
proton pseudocapacitor
Protons
proton‐rich electrolyte
Structural analysis
Sulfuric acid
Temperature
Temperature dependence
ultralow temperature
title Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%E2%80%90Temperature%20(%E2%89%A4%20%E2%88%9280%C2%A0%C2%B0C)%20Proton%20Pseudocapacitor%20with%20High%20Power%E2%80%90Energy%20Density%20Enabled%20by%20Tailored%20Proton%E2%80%90Rich%20Electrolyte%20and%20Electrode&rft.jtitle=Advanced%20functional%20materials&rft.au=Xu,%20Tiezhu&rft.date=2024-11-01&rft.volume=34&rft.issue=48&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202408465&rft_dat=%3Cproquest_cross%3E3132554045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132554045&rft_id=info:pmid/&rfr_iscdi=true