Harnessing Coordination‐Assisted Surface Functionalization for Ligand‐Induced Growth of Ultrafine Metal Nanoparticles on MXene

The synthesis of ultrafine metal nanoparticles and their integration onto 2D nanomaterials have attracted significant interest due to their outstanding chemical and electrochemical activity. Among 2D materials, MXenes have emerged as promising candidates for hybridization owing to their abundant sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11, Vol.34 (48), p.n/a
Hauptverfasser: Yang, Eunyeong, Park, Ki Hong, Lee, Juyun, Oh, Taegon, Ko, Tae Yun, Kim, Seon Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page
container_title Advanced functional materials
container_volume 34
creator Yang, Eunyeong
Park, Ki Hong
Lee, Juyun
Oh, Taegon
Ko, Tae Yun
Kim, Seon Joon
description The synthesis of ultrafine metal nanoparticles and their integration onto 2D nanomaterials have attracted significant interest due to their outstanding chemical and electrochemical activity. Among 2D materials, MXenes have emerged as promising candidates for hybridization owing to their abundant surface nucleation sites and high electrical conductivity. However, achieving uniform growth of ultrafine metal nanoparticles on MXene surfaces remains a challenge due to non‐uniform metal nucleation and growth behaviors. In this study, a novel coordination‐assisted surface functionalization method is presented to graft organic ligands onto MXene, promoting the uniform growth of ultrafine metal nanoparticles. By leveraging the mutual attraction between metal ions, organic ligands, and MXene surface functional groups, MXene surfaces are efficiently functionalized through palladium coordination complexes. Subsequent ligand‐induced growth facilitated the uniform nucleation of ultrafine metal nanoparticles, resulting in densely anchored nanoparticles of 1–3 nm in size on MXene. Comprehensive characterizations reveal the effectiveness of the method, demonstrating exceptional properties of the MXene‐metal nanoparticle hybrid, particularly in hydrogen sensing applications. This study highlights the potential of coordination‐assisted surface functionalization for the controlled synthesis of MXene‐based nanomaterials with tailored properties for diverse applications. In this study, a novel coordination‐assisted surface functionalization method to graft organic ligands onto MXene is presented, promoting the uniform growth of ultrafine metal nanoparticles. By leveraging the mutual attraction between metal ions, organic ligands, and MXene surface functional groups, MXene surfaces are functionalized through palladium coordination complexes. Subsequent ligand‐induced growth facilitates the uniform nucleation of ultrafine metal nanoparticles of 1–3 nm in size on MXene.
doi_str_mv 10.1002/adfm.202408444
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132554028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132554028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-7626df9d1c2b8db992208c5a4b2ccb64dd9037863eb0632c20046d903ba797bf3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKtb1wHXU5NMOpdlqfYCrS600N2QyaWmTJOazFDqSnwCn9EnMWOlLl2dwznfd-D8AFxj1MMIkVsm1KZHEKEoo5SegA5OcBLFiGSnxx4vz8GF92uEcJrGtAM-JswZ6b02Kzi01gltWK2t-Xr_HISpr6WAT41TjEs4agxvd6zSbz8QVNbBmV4xIwI_NaLhAR87u6tfoFVwUdWOKW0knMuaVfCBGbtlrta8kh4Gf76URl6CM8UqL69-axcsRvfPw0k0exxPh4NZxNunojQhiVC5wJyUmSjznBCU8T6jJeG8TKgQOYrTLIlliZKYBAnRpJ2VLM3TUsVdcHO4u3X2tZG-Lta2ceEbX8Q4Jv0-DVEFqneguLPeO6mKrdMb5vYFRkWbc9HmXBxzDkJ-EHa6kvt_6GJwN5r_ud_2DYWZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132554028</pqid></control><display><type>article</type><title>Harnessing Coordination‐Assisted Surface Functionalization for Ligand‐Induced Growth of Ultrafine Metal Nanoparticles on MXene</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Eunyeong ; Park, Ki Hong ; Lee, Juyun ; Oh, Taegon ; Ko, Tae Yun ; Kim, Seon Joon</creator><creatorcontrib>Yang, Eunyeong ; Park, Ki Hong ; Lee, Juyun ; Oh, Taegon ; Ko, Tae Yun ; Kim, Seon Joon</creatorcontrib><description>The synthesis of ultrafine metal nanoparticles and their integration onto 2D nanomaterials have attracted significant interest due to their outstanding chemical and electrochemical activity. Among 2D materials, MXenes have emerged as promising candidates for hybridization owing to their abundant surface nucleation sites and high electrical conductivity. However, achieving uniform growth of ultrafine metal nanoparticles on MXene surfaces remains a challenge due to non‐uniform metal nucleation and growth behaviors. In this study, a novel coordination‐assisted surface functionalization method is presented to graft organic ligands onto MXene, promoting the uniform growth of ultrafine metal nanoparticles. By leveraging the mutual attraction between metal ions, organic ligands, and MXene surface functional groups, MXene surfaces are efficiently functionalized through palladium coordination complexes. Subsequent ligand‐induced growth facilitated the uniform nucleation of ultrafine metal nanoparticles, resulting in densely anchored nanoparticles of 1–3 nm in size on MXene. Comprehensive characterizations reveal the effectiveness of the method, demonstrating exceptional properties of the MXene‐metal nanoparticle hybrid, particularly in hydrogen sensing applications. This study highlights the potential of coordination‐assisted surface functionalization for the controlled synthesis of MXene‐based nanomaterials with tailored properties for diverse applications. In this study, a novel coordination‐assisted surface functionalization method to graft organic ligands onto MXene is presented, promoting the uniform growth of ultrafine metal nanoparticles. By leveraging the mutual attraction between metal ions, organic ligands, and MXene surface functional groups, MXene surfaces are functionalized through palladium coordination complexes. Subsequent ligand‐induced growth facilitates the uniform nucleation of ultrafine metal nanoparticles of 1–3 nm in size on MXene.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202408444</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chemical activity ; Chemical synthesis ; coordination chemistry ; Coordination compounds ; Electrical resistivity ; Functional groups ; gas sensor ; Ligands ; metal nanoparticles ; MXene ; MXenes ; Nanomaterials ; Nanoparticles ; Nucleation ; Palladium ; surface functionalization ; Two dimensional materials ; Ultrafines</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (48), p.n/a</ispartof><rights>2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2024-7626df9d1c2b8db992208c5a4b2ccb64dd9037863eb0632c20046d903ba797bf3</cites><orcidid>0000-0002-5338-3856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202408444$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202408444$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yang, Eunyeong</creatorcontrib><creatorcontrib>Park, Ki Hong</creatorcontrib><creatorcontrib>Lee, Juyun</creatorcontrib><creatorcontrib>Oh, Taegon</creatorcontrib><creatorcontrib>Ko, Tae Yun</creatorcontrib><creatorcontrib>Kim, Seon Joon</creatorcontrib><title>Harnessing Coordination‐Assisted Surface Functionalization for Ligand‐Induced Growth of Ultrafine Metal Nanoparticles on MXene</title><title>Advanced functional materials</title><description>The synthesis of ultrafine metal nanoparticles and their integration onto 2D nanomaterials have attracted significant interest due to their outstanding chemical and electrochemical activity. Among 2D materials, MXenes have emerged as promising candidates for hybridization owing to their abundant surface nucleation sites and high electrical conductivity. However, achieving uniform growth of ultrafine metal nanoparticles on MXene surfaces remains a challenge due to non‐uniform metal nucleation and growth behaviors. In this study, a novel coordination‐assisted surface functionalization method is presented to graft organic ligands onto MXene, promoting the uniform growth of ultrafine metal nanoparticles. By leveraging the mutual attraction between metal ions, organic ligands, and MXene surface functional groups, MXene surfaces are efficiently functionalized through palladium coordination complexes. Subsequent ligand‐induced growth facilitated the uniform nucleation of ultrafine metal nanoparticles, resulting in densely anchored nanoparticles of 1–3 nm in size on MXene. Comprehensive characterizations reveal the effectiveness of the method, demonstrating exceptional properties of the MXene‐metal nanoparticle hybrid, particularly in hydrogen sensing applications. This study highlights the potential of coordination‐assisted surface functionalization for the controlled synthesis of MXene‐based nanomaterials with tailored properties for diverse applications. In this study, a novel coordination‐assisted surface functionalization method to graft organic ligands onto MXene is presented, promoting the uniform growth of ultrafine metal nanoparticles. By leveraging the mutual attraction between metal ions, organic ligands, and MXene surface functional groups, MXene surfaces are functionalized through palladium coordination complexes. Subsequent ligand‐induced growth facilitates the uniform nucleation of ultrafine metal nanoparticles of 1–3 nm in size on MXene.</description><subject>Chemical activity</subject><subject>Chemical synthesis</subject><subject>coordination chemistry</subject><subject>Coordination compounds</subject><subject>Electrical resistivity</subject><subject>Functional groups</subject><subject>gas sensor</subject><subject>Ligands</subject><subject>metal nanoparticles</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Palladium</subject><subject>surface functionalization</subject><subject>Two dimensional materials</subject><subject>Ultrafines</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMtKAzEUhoMoWKtb1wHXU5NMOpdlqfYCrS600N2QyaWmTJOazFDqSnwCn9EnMWOlLl2dwznfd-D8AFxj1MMIkVsm1KZHEKEoo5SegA5OcBLFiGSnxx4vz8GF92uEcJrGtAM-JswZ6b02Kzi01gltWK2t-Xr_HISpr6WAT41TjEs4agxvd6zSbz8QVNbBmV4xIwI_NaLhAR87u6tfoFVwUdWOKW0knMuaVfCBGbtlrta8kh4Gf76URl6CM8UqL69-axcsRvfPw0k0exxPh4NZxNunojQhiVC5wJyUmSjznBCU8T6jJeG8TKgQOYrTLIlliZKYBAnRpJ2VLM3TUsVdcHO4u3X2tZG-Lta2ceEbX8Q4Jv0-DVEFqneguLPeO6mKrdMb5vYFRkWbc9HmXBxzDkJ-EHa6kvt_6GJwN5r_ud_2DYWZ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Yang, Eunyeong</creator><creator>Park, Ki Hong</creator><creator>Lee, Juyun</creator><creator>Oh, Taegon</creator><creator>Ko, Tae Yun</creator><creator>Kim, Seon Joon</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5338-3856</orcidid></search><sort><creationdate>20241101</creationdate><title>Harnessing Coordination‐Assisted Surface Functionalization for Ligand‐Induced Growth of Ultrafine Metal Nanoparticles on MXene</title><author>Yang, Eunyeong ; Park, Ki Hong ; Lee, Juyun ; Oh, Taegon ; Ko, Tae Yun ; Kim, Seon Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-7626df9d1c2b8db992208c5a4b2ccb64dd9037863eb0632c20046d903ba797bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical activity</topic><topic>Chemical synthesis</topic><topic>coordination chemistry</topic><topic>Coordination compounds</topic><topic>Electrical resistivity</topic><topic>Functional groups</topic><topic>gas sensor</topic><topic>Ligands</topic><topic>metal nanoparticles</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Palladium</topic><topic>surface functionalization</topic><topic>Two dimensional materials</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Eunyeong</creatorcontrib><creatorcontrib>Park, Ki Hong</creatorcontrib><creatorcontrib>Lee, Juyun</creatorcontrib><creatorcontrib>Oh, Taegon</creatorcontrib><creatorcontrib>Ko, Tae Yun</creatorcontrib><creatorcontrib>Kim, Seon Joon</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Eunyeong</au><au>Park, Ki Hong</au><au>Lee, Juyun</au><au>Oh, Taegon</au><au>Ko, Tae Yun</au><au>Kim, Seon Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing Coordination‐Assisted Surface Functionalization for Ligand‐Induced Growth of Ultrafine Metal Nanoparticles on MXene</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>48</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The synthesis of ultrafine metal nanoparticles and their integration onto 2D nanomaterials have attracted significant interest due to their outstanding chemical and electrochemical activity. Among 2D materials, MXenes have emerged as promising candidates for hybridization owing to their abundant surface nucleation sites and high electrical conductivity. However, achieving uniform growth of ultrafine metal nanoparticles on MXene surfaces remains a challenge due to non‐uniform metal nucleation and growth behaviors. In this study, a novel coordination‐assisted surface functionalization method is presented to graft organic ligands onto MXene, promoting the uniform growth of ultrafine metal nanoparticles. By leveraging the mutual attraction between metal ions, organic ligands, and MXene surface functional groups, MXene surfaces are efficiently functionalized through palladium coordination complexes. Subsequent ligand‐induced growth facilitated the uniform nucleation of ultrafine metal nanoparticles, resulting in densely anchored nanoparticles of 1–3 nm in size on MXene. Comprehensive characterizations reveal the effectiveness of the method, demonstrating exceptional properties of the MXene‐metal nanoparticle hybrid, particularly in hydrogen sensing applications. This study highlights the potential of coordination‐assisted surface functionalization for the controlled synthesis of MXene‐based nanomaterials with tailored properties for diverse applications. In this study, a novel coordination‐assisted surface functionalization method to graft organic ligands onto MXene is presented, promoting the uniform growth of ultrafine metal nanoparticles. By leveraging the mutual attraction between metal ions, organic ligands, and MXene surface functional groups, MXene surfaces are functionalized through palladium coordination complexes. Subsequent ligand‐induced growth facilitates the uniform nucleation of ultrafine metal nanoparticles of 1–3 nm in size on MXene.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202408444</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5338-3856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11, Vol.34 (48), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3132554028
source Wiley Online Library Journals Frontfile Complete
subjects Chemical activity
Chemical synthesis
coordination chemistry
Coordination compounds
Electrical resistivity
Functional groups
gas sensor
Ligands
metal nanoparticles
MXene
MXenes
Nanomaterials
Nanoparticles
Nucleation
Palladium
surface functionalization
Two dimensional materials
Ultrafines
title Harnessing Coordination‐Assisted Surface Functionalization for Ligand‐Induced Growth of Ultrafine Metal Nanoparticles on MXene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20Coordination%E2%80%90Assisted%20Surface%20Functionalization%20for%20Ligand%E2%80%90Induced%20Growth%20of%20Ultrafine%20Metal%20Nanoparticles%20on%20MXene&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Eunyeong&rft.date=2024-11-01&rft.volume=34&rft.issue=48&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202408444&rft_dat=%3Cproquest_cross%3E3132554028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132554028&rft_id=info:pmid/&rfr_iscdi=true