Stimuli‐Responsive Prototissues via DNA‐Mediated Self‐Assembly of Polymer Giant Unilamellar Vesicles
Gaining insight into the complex functions of tissues, which involve communicating cell types, by utilizing materials that mimic the properties of real tissue, is an important step in developing advanced biomedical applications. However, building 3D networks of interconnected protocells capable of c...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-11, Vol.34 (48), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Huang, Xinan Skowicki, Michal Dinu, Ionel Adrian Schoenenberger, Cora‐Ann Palivan, Cornelia G. |
description | Gaining insight into the complex functions of tissues, which involve communicating cell types, by utilizing materials that mimic the properties of real tissue, is an important step in developing advanced biomedical applications. However, building 3D networks of interconnected protocells capable of chemical information processing and collective output remains a challenge. Herein, the construction of a prototissue based on the DNA‐mediated assembly of polymeric giant unilamellar vesicles (pGUVs) are presented with differential sensitivity, forming a multicompartment communicating system. One set of pGUVs hosts microgels as artificial Mg2+ storage organelles, which can be triggered to release their Mg2+ by pH changes in the environment. The downstream linked set of protocells contains a Mg2+ sensitive dye that responds to the Mg2+ signal. The density of complementary DNA strands on the surface of the respective pGUVs determines not only the size of the pGUV ensemble but also modulates sensitivity toward magnesium. Moreover, Mg2+ signaling to downstream protocells loaded with monomeric actin induces the in situ formation of an artificial cytoskeleton. Overall, through the clustering of protocells hosting distinct artificial organelles with controlled architecture, such unique prototissues that mimic intratissue communication generate new prospects in using advanced functional materials for multi‐step catalysis and biomedicine.
Stimuli‐responsive prototissues are constructed by DNA‐mediated assembly of polymeric giant unilamellar vesicles (pGUVs) harboring distinct stimuli‐responsive artificial organelles and biomolecules. Upon acidification of the environment, Mg2+‐storing organelles in one pGUV population release their content into the protocell lumen. The released Mg2+ acts as second messenger to stimulate either fluorescence or the in situ formation of actin filaments in downstream protocells. |
doi_str_mv | 10.1002/adfm.202408373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132554022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132554022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2023-65db124cabce488cfccc197bc0165ec61e1960f647734c0cc2adcdfe054f391e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPW_Oxn8eltVVotVgr3kKanUBKdrcm28re_An-Rn-JWyr16Glm4Hln5n0RuqZkQAlht7LQ5YARFpKUJ_wE9WhM44ATlp4ee_p2ji68XxNCk4SHPbReNKbcWvP9-fUMflNX3uwAz13d1I3xfgse74zEo8e8I2ZQGNlAgRdgdTfn3kO5si2uNZ7Xti3B4YmRVYOXlbGyBGulw6_gjbLgL9GZltbD1W_to-X47mV4H0yfJg_DfBqo7nkexFGxoixUcqUgTFOllVI0S1aK0DgCFVOgWUx0HO4NKKIUk4UqNJAo1DyjwPvo5rB34-r3zkAj1vXWVd1JwSlnURQSxjpqcKCUq713oMXGmVK6VlAi9nmKfZ7imGcnyA6CD2Oh_YcW-Wg8-9P-AD74fl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132554022</pqid></control><display><type>article</type><title>Stimuli‐Responsive Prototissues via DNA‐Mediated Self‐Assembly of Polymer Giant Unilamellar Vesicles</title><source>Wiley Online Library All Journals</source><creator>Huang, Xinan ; Skowicki, Michal ; Dinu, Ionel Adrian ; Schoenenberger, Cora‐Ann ; Palivan, Cornelia G.</creator><creatorcontrib>Huang, Xinan ; Skowicki, Michal ; Dinu, Ionel Adrian ; Schoenenberger, Cora‐Ann ; Palivan, Cornelia G.</creatorcontrib><description>Gaining insight into the complex functions of tissues, which involve communicating cell types, by utilizing materials that mimic the properties of real tissue, is an important step in developing advanced biomedical applications. However, building 3D networks of interconnected protocells capable of chemical information processing and collective output remains a challenge. Herein, the construction of a prototissue based on the DNA‐mediated assembly of polymeric giant unilamellar vesicles (pGUVs) are presented with differential sensitivity, forming a multicompartment communicating system. One set of pGUVs hosts microgels as artificial Mg2+ storage organelles, which can be triggered to release their Mg2+ by pH changes in the environment. The downstream linked set of protocells contains a Mg2+ sensitive dye that responds to the Mg2+ signal. The density of complementary DNA strands on the surface of the respective pGUVs determines not only the size of the pGUV ensemble but also modulates sensitivity toward magnesium. Moreover, Mg2+ signaling to downstream protocells loaded with monomeric actin induces the in situ formation of an artificial cytoskeleton. Overall, through the clustering of protocells hosting distinct artificial organelles with controlled architecture, such unique prototissues that mimic intratissue communication generate new prospects in using advanced functional materials for multi‐step catalysis and biomedicine.
Stimuli‐responsive prototissues are constructed by DNA‐mediated assembly of polymeric giant unilamellar vesicles (pGUVs) harboring distinct stimuli‐responsive artificial organelles and biomolecules. Upon acidification of the environment, Mg2+‐storing organelles in one pGUV population release their content into the protocell lumen. The released Mg2+ acts as second messenger to stimulate either fluorescence or the in situ formation of actin filaments in downstream protocells.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202408373</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>artificial organelles ; Biomedical materials ; Clustering ; Communication ; Data processing ; Functional materials ; Magnesium ; Mg2+ signaling ; microgels ; Organelles ; polymer giant unilamellar vesicles (pGUVs) ; prototissues ; Self-assembly ; Sensitivity ; stimuli‐responsive communication ; Vesicles</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (48), p.n/a</ispartof><rights>2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2023-65db124cabce488cfccc197bc0165ec61e1960f647734c0cc2adcdfe054f391e3</cites><orcidid>0000-0002-8208-939X ; 0000-0001-7777-5355 ; 0000-0003-1955-5615 ; 0000-0003-2933-7435 ; 0000-0001-8538-8486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202408373$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202408373$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Huang, Xinan</creatorcontrib><creatorcontrib>Skowicki, Michal</creatorcontrib><creatorcontrib>Dinu, Ionel Adrian</creatorcontrib><creatorcontrib>Schoenenberger, Cora‐Ann</creatorcontrib><creatorcontrib>Palivan, Cornelia G.</creatorcontrib><title>Stimuli‐Responsive Prototissues via DNA‐Mediated Self‐Assembly of Polymer Giant Unilamellar Vesicles</title><title>Advanced functional materials</title><description>Gaining insight into the complex functions of tissues, which involve communicating cell types, by utilizing materials that mimic the properties of real tissue, is an important step in developing advanced biomedical applications. However, building 3D networks of interconnected protocells capable of chemical information processing and collective output remains a challenge. Herein, the construction of a prototissue based on the DNA‐mediated assembly of polymeric giant unilamellar vesicles (pGUVs) are presented with differential sensitivity, forming a multicompartment communicating system. One set of pGUVs hosts microgels as artificial Mg2+ storage organelles, which can be triggered to release their Mg2+ by pH changes in the environment. The downstream linked set of protocells contains a Mg2+ sensitive dye that responds to the Mg2+ signal. The density of complementary DNA strands on the surface of the respective pGUVs determines not only the size of the pGUV ensemble but also modulates sensitivity toward magnesium. Moreover, Mg2+ signaling to downstream protocells loaded with monomeric actin induces the in situ formation of an artificial cytoskeleton. Overall, through the clustering of protocells hosting distinct artificial organelles with controlled architecture, such unique prototissues that mimic intratissue communication generate new prospects in using advanced functional materials for multi‐step catalysis and biomedicine.
Stimuli‐responsive prototissues are constructed by DNA‐mediated assembly of polymeric giant unilamellar vesicles (pGUVs) harboring distinct stimuli‐responsive artificial organelles and biomolecules. Upon acidification of the environment, Mg2+‐storing organelles in one pGUV population release their content into the protocell lumen. The released Mg2+ acts as second messenger to stimulate either fluorescence or the in situ formation of actin filaments in downstream protocells.</description><subject>artificial organelles</subject><subject>Biomedical materials</subject><subject>Clustering</subject><subject>Communication</subject><subject>Data processing</subject><subject>Functional materials</subject><subject>Magnesium</subject><subject>Mg2+ signaling</subject><subject>microgels</subject><subject>Organelles</subject><subject>polymer giant unilamellar vesicles (pGUVs)</subject><subject>prototissues</subject><subject>Self-assembly</subject><subject>Sensitivity</subject><subject>stimuli‐responsive communication</subject><subject>Vesicles</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1LAzEQhoMoWKtXzwHPW_Oxn8eltVVotVgr3kKanUBKdrcm28re_An-Rn-JWyr16Glm4Hln5n0RuqZkQAlht7LQ5YARFpKUJ_wE9WhM44ATlp4ee_p2ji68XxNCk4SHPbReNKbcWvP9-fUMflNX3uwAz13d1I3xfgse74zEo8e8I2ZQGNlAgRdgdTfn3kO5si2uNZ7Xti3B4YmRVYOXlbGyBGulw6_gjbLgL9GZltbD1W_to-X47mV4H0yfJg_DfBqo7nkexFGxoixUcqUgTFOllVI0S1aK0DgCFVOgWUx0HO4NKKIUk4UqNJAo1DyjwPvo5rB34-r3zkAj1vXWVd1JwSlnURQSxjpqcKCUq713oMXGmVK6VlAi9nmKfZ7imGcnyA6CD2Oh_YcW-Wg8-9P-AD74fl4</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Huang, Xinan</creator><creator>Skowicki, Michal</creator><creator>Dinu, Ionel Adrian</creator><creator>Schoenenberger, Cora‐Ann</creator><creator>Palivan, Cornelia G.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8208-939X</orcidid><orcidid>https://orcid.org/0000-0001-7777-5355</orcidid><orcidid>https://orcid.org/0000-0003-1955-5615</orcidid><orcidid>https://orcid.org/0000-0003-2933-7435</orcidid><orcidid>https://orcid.org/0000-0001-8538-8486</orcidid></search><sort><creationdate>20241101</creationdate><title>Stimuli‐Responsive Prototissues via DNA‐Mediated Self‐Assembly of Polymer Giant Unilamellar Vesicles</title><author>Huang, Xinan ; Skowicki, Michal ; Dinu, Ionel Adrian ; Schoenenberger, Cora‐Ann ; Palivan, Cornelia G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2023-65db124cabce488cfccc197bc0165ec61e1960f647734c0cc2adcdfe054f391e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial organelles</topic><topic>Biomedical materials</topic><topic>Clustering</topic><topic>Communication</topic><topic>Data processing</topic><topic>Functional materials</topic><topic>Magnesium</topic><topic>Mg2+ signaling</topic><topic>microgels</topic><topic>Organelles</topic><topic>polymer giant unilamellar vesicles (pGUVs)</topic><topic>prototissues</topic><topic>Self-assembly</topic><topic>Sensitivity</topic><topic>stimuli‐responsive communication</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xinan</creatorcontrib><creatorcontrib>Skowicki, Michal</creatorcontrib><creatorcontrib>Dinu, Ionel Adrian</creatorcontrib><creatorcontrib>Schoenenberger, Cora‐Ann</creatorcontrib><creatorcontrib>Palivan, Cornelia G.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xinan</au><au>Skowicki, Michal</au><au>Dinu, Ionel Adrian</au><au>Schoenenberger, Cora‐Ann</au><au>Palivan, Cornelia G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimuli‐Responsive Prototissues via DNA‐Mediated Self‐Assembly of Polymer Giant Unilamellar Vesicles</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>48</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Gaining insight into the complex functions of tissues, which involve communicating cell types, by utilizing materials that mimic the properties of real tissue, is an important step in developing advanced biomedical applications. However, building 3D networks of interconnected protocells capable of chemical information processing and collective output remains a challenge. Herein, the construction of a prototissue based on the DNA‐mediated assembly of polymeric giant unilamellar vesicles (pGUVs) are presented with differential sensitivity, forming a multicompartment communicating system. One set of pGUVs hosts microgels as artificial Mg2+ storage organelles, which can be triggered to release their Mg2+ by pH changes in the environment. The downstream linked set of protocells contains a Mg2+ sensitive dye that responds to the Mg2+ signal. The density of complementary DNA strands on the surface of the respective pGUVs determines not only the size of the pGUV ensemble but also modulates sensitivity toward magnesium. Moreover, Mg2+ signaling to downstream protocells loaded with monomeric actin induces the in situ formation of an artificial cytoskeleton. Overall, through the clustering of protocells hosting distinct artificial organelles with controlled architecture, such unique prototissues that mimic intratissue communication generate new prospects in using advanced functional materials for multi‐step catalysis and biomedicine.
Stimuli‐responsive prototissues are constructed by DNA‐mediated assembly of polymeric giant unilamellar vesicles (pGUVs) harboring distinct stimuli‐responsive artificial organelles and biomolecules. Upon acidification of the environment, Mg2+‐storing organelles in one pGUV population release their content into the protocell lumen. The released Mg2+ acts as second messenger to stimulate either fluorescence or the in situ formation of actin filaments in downstream protocells.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202408373</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8208-939X</orcidid><orcidid>https://orcid.org/0000-0001-7777-5355</orcidid><orcidid>https://orcid.org/0000-0003-1955-5615</orcidid><orcidid>https://orcid.org/0000-0003-2933-7435</orcidid><orcidid>https://orcid.org/0000-0001-8538-8486</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-11, Vol.34 (48), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3132554022 |
source | Wiley Online Library All Journals |
subjects | artificial organelles Biomedical materials Clustering Communication Data processing Functional materials Magnesium Mg2+ signaling microgels Organelles polymer giant unilamellar vesicles (pGUVs) prototissues Self-assembly Sensitivity stimuli‐responsive communication Vesicles |
title | Stimuli‐Responsive Prototissues via DNA‐Mediated Self‐Assembly of Polymer Giant Unilamellar Vesicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimuli%E2%80%90Responsive%20Prototissues%20via%20DNA%E2%80%90Mediated%20Self%E2%80%90Assembly%20of%20Polymer%20Giant%20Unilamellar%20Vesicles&rft.jtitle=Advanced%20functional%20materials&rft.au=Huang,%20Xinan&rft.date=2024-11-01&rft.volume=34&rft.issue=48&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202408373&rft_dat=%3Cproquest_cross%3E3132554022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132554022&rft_id=info:pmid/&rfr_iscdi=true |