Natural convection in a vertical channel. Part 2. Oblique solutions and global bifurcations in a spanwise-extended domain

Vertical thermal convection is a non-equilibrium system in which both buoyancy and shear forces play a role in driving the convective flow. Beyond the onset of convection, the driven dissipative system exhibits chaotic dynamics and turbulence. In a three-dimensional domain extended in both the verti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-11, Vol.1000, Article A29
Hauptverfasser: Zheng, Zheng, Tuckerman, Laurette S., Schneider, Tobias M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 1000
creator Zheng, Zheng
Tuckerman, Laurette S.
Schneider, Tobias M.
description Vertical thermal convection is a non-equilibrium system in which both buoyancy and shear forces play a role in driving the convective flow. Beyond the onset of convection, the driven dissipative system exhibits chaotic dynamics and turbulence. In a three-dimensional domain extended in both the vertical and the transverse dimensions, Gao et al. (Phys. Rev. E, vol. 97, 2018, 053107) have observed a variety of convection patterns which are not described by linear stability analysis. We investigate the fully nonlinear dynamics of vertical convection using a dynamical-systems approach based on the Oberbeck–Boussinesq equations. We compute the invariant solutions of these equations and the bifurcations that are responsible for the creation and termination of various branches. We map out a sequence of local bifurcations from the laminar base state, including simultaneous bifurcations involving patterned steady states with different symmetries. This atypical phenomenon of multiple branches simultaneously bifurcating from a single parent branch is explained by the role of $D_4$ symmetry. In addition, two global bifurcations are identified: first, a homoclinic cycle from modulated transverse rolls and second, a heteroclinic cycle linking two symmetry-related diamond-roll patterns. These are confirmed by phase space projections as well as the functional form of the divergence of the period close to the bifurcation points. The heteroclinic orbit is shown to be robust and to result from a 1:2 mode interaction. The intricacy of this bifurcation diagram highlights the essential role played by dynamical systems theory and computation in hydrodynamic configurations.
doi_str_mv 10.1017/jfm.2024.840
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132502202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_840</cupid><sourcerecordid>3132502202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-126407112ffce30d36ff43acbebea548d04deb4f632808e89354c330c14f84683</originalsourceid><addsrcrecordid>eNptkMlOwzAQhi0EEqVw4wEscSVhvGTpEVVsUkU5wNlyvBRXqVPsBOjb49BKXDiNNPPNP6MPoUsCOQFS3aztJqdAeV5zOEITwstZVpW8OEYTAEozQiicorMY1wCEwayaoN2z7IcgW6w6_2lU7zqPnccSf5rQOzUO3qX3ps3xiww9pjleNq37GAyOXTuMfMTSa7xquybRjbNDUHLf_w2KW-m_XDSZ-e6N10Zj3W2k8-foxMo2motDnaK3-7vX-WO2WD48zW8XmaK06jNCSw5V-txaZRhoVlrLmVSNaYwseK2Ba9NwWzJaQ23qGSu4YgwU4bbmZc2m6Gqfuw1dejv2Yt0NwaeTghFGiyQGaKKu95QKXYzBWLENbiPDThAQo1yR5IpRrkhyE54fcLlpgtMr85f678IPezh8wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132502202</pqid></control><display><type>article</type><title>Natural convection in a vertical channel. Part 2. Oblique solutions and global bifurcations in a spanwise-extended domain</title><source>Cambridge University Press Journals Complete</source><creator>Zheng, Zheng ; Tuckerman, Laurette S. ; Schneider, Tobias M.</creator><creatorcontrib>Zheng, Zheng ; Tuckerman, Laurette S. ; Schneider, Tobias M.</creatorcontrib><description>Vertical thermal convection is a non-equilibrium system in which both buoyancy and shear forces play a role in driving the convective flow. Beyond the onset of convection, the driven dissipative system exhibits chaotic dynamics and turbulence. In a three-dimensional domain extended in both the vertical and the transverse dimensions, Gao et al. (Phys. Rev. E, vol. 97, 2018, 053107) have observed a variety of convection patterns which are not described by linear stability analysis. We investigate the fully nonlinear dynamics of vertical convection using a dynamical-systems approach based on the Oberbeck–Boussinesq equations. We compute the invariant solutions of these equations and the bifurcations that are responsible for the creation and termination of various branches. We map out a sequence of local bifurcations from the laminar base state, including simultaneous bifurcations involving patterned steady states with different symmetries. This atypical phenomenon of multiple branches simultaneously bifurcating from a single parent branch is explained by the role of $D_4$ symmetry. In addition, two global bifurcations are identified: first, a homoclinic cycle from modulated transverse rolls and second, a heteroclinic cycle linking two symmetry-related diamond-roll patterns. These are confirmed by phase space projections as well as the functional form of the divergence of the period close to the bifurcation points. The heteroclinic orbit is shown to be robust and to result from a 1:2 mode interaction. The intricacy of this bifurcation diagram highlights the essential role played by dynamical systems theory and computation in hydrodynamic configurations.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.840</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Bifurcations ; Boundary conditions ; Boussinesq approximation ; Boussinesq equations ; Cellular convection ; Chaos theory ; Convection ; Convective flow ; Diamonds ; Divergence ; Dynamic systems theory ; Dynamical systems ; Free convection ; Hydrodynamic configurations ; JFM Papers ; Nonlinear dynamics ; Nonlinear systems ; Numerical analysis ; Rayleigh number ; Shear forces ; Stability analysis ; Symmetry ; Three dimensional flow ; Turbulence ; Vertical forces</subject><ispartof>Journal of fluid mechanics, 2024-11, Vol.1000, Article A29</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press.</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-126407112ffce30d36ff43acbebea548d04deb4f632808e89354c330c14f84683</cites><orcidid>0000-0002-9833-1347 ; 0000-0001-5893-9238 ; 0000-0002-8617-8998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024008401/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Zheng, Zheng</creatorcontrib><creatorcontrib>Tuckerman, Laurette S.</creatorcontrib><creatorcontrib>Schneider, Tobias M.</creatorcontrib><title>Natural convection in a vertical channel. Part 2. Oblique solutions and global bifurcations in a spanwise-extended domain</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Vertical thermal convection is a non-equilibrium system in which both buoyancy and shear forces play a role in driving the convective flow. Beyond the onset of convection, the driven dissipative system exhibits chaotic dynamics and turbulence. In a three-dimensional domain extended in both the vertical and the transverse dimensions, Gao et al. (Phys. Rev. E, vol. 97, 2018, 053107) have observed a variety of convection patterns which are not described by linear stability analysis. We investigate the fully nonlinear dynamics of vertical convection using a dynamical-systems approach based on the Oberbeck–Boussinesq equations. We compute the invariant solutions of these equations and the bifurcations that are responsible for the creation and termination of various branches. We map out a sequence of local bifurcations from the laminar base state, including simultaneous bifurcations involving patterned steady states with different symmetries. This atypical phenomenon of multiple branches simultaneously bifurcating from a single parent branch is explained by the role of $D_4$ symmetry. In addition, two global bifurcations are identified: first, a homoclinic cycle from modulated transverse rolls and second, a heteroclinic cycle linking two symmetry-related diamond-roll patterns. These are confirmed by phase space projections as well as the functional form of the divergence of the period close to the bifurcation points. The heteroclinic orbit is shown to be robust and to result from a 1:2 mode interaction. The intricacy of this bifurcation diagram highlights the essential role played by dynamical systems theory and computation in hydrodynamic configurations.</description><subject>Bifurcations</subject><subject>Boundary conditions</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Cellular convection</subject><subject>Chaos theory</subject><subject>Convection</subject><subject>Convective flow</subject><subject>Diamonds</subject><subject>Divergence</subject><subject>Dynamic systems theory</subject><subject>Dynamical systems</subject><subject>Free convection</subject><subject>Hydrodynamic configurations</subject><subject>JFM Papers</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Numerical analysis</subject><subject>Rayleigh number</subject><subject>Shear forces</subject><subject>Stability analysis</subject><subject>Symmetry</subject><subject>Three dimensional flow</subject><subject>Turbulence</subject><subject>Vertical forces</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkMlOwzAQhi0EEqVw4wEscSVhvGTpEVVsUkU5wNlyvBRXqVPsBOjb49BKXDiNNPPNP6MPoUsCOQFS3aztJqdAeV5zOEITwstZVpW8OEYTAEozQiicorMY1wCEwayaoN2z7IcgW6w6_2lU7zqPnccSf5rQOzUO3qX3ps3xiww9pjleNq37GAyOXTuMfMTSa7xquybRjbNDUHLf_w2KW-m_XDSZ-e6N10Zj3W2k8-foxMo2motDnaK3-7vX-WO2WD48zW8XmaK06jNCSw5V-txaZRhoVlrLmVSNaYwseK2Ba9NwWzJaQ23qGSu4YgwU4bbmZc2m6Gqfuw1dejv2Yt0NwaeTghFGiyQGaKKu95QKXYzBWLENbiPDThAQo1yR5IpRrkhyE54fcLlpgtMr85f678IPezh8wg</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Zheng, Zheng</creator><creator>Tuckerman, Laurette S.</creator><creator>Schneider, Tobias M.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9833-1347</orcidid><orcidid>https://orcid.org/0000-0001-5893-9238</orcidid><orcidid>https://orcid.org/0000-0002-8617-8998</orcidid></search><sort><creationdate>20241125</creationdate><title>Natural convection in a vertical channel. Part 2. Oblique solutions and global bifurcations in a spanwise-extended domain</title><author>Zheng, Zheng ; Tuckerman, Laurette S. ; Schneider, Tobias M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-126407112ffce30d36ff43acbebea548d04deb4f632808e89354c330c14f84683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Boundary conditions</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Cellular convection</topic><topic>Chaos theory</topic><topic>Convection</topic><topic>Convective flow</topic><topic>Diamonds</topic><topic>Divergence</topic><topic>Dynamic systems theory</topic><topic>Dynamical systems</topic><topic>Free convection</topic><topic>Hydrodynamic configurations</topic><topic>JFM Papers</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Numerical analysis</topic><topic>Rayleigh number</topic><topic>Shear forces</topic><topic>Stability analysis</topic><topic>Symmetry</topic><topic>Three dimensional flow</topic><topic>Turbulence</topic><topic>Vertical forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zheng</creatorcontrib><creatorcontrib>Tuckerman, Laurette S.</creatorcontrib><creatorcontrib>Schneider, Tobias M.</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Zheng</au><au>Tuckerman, Laurette S.</au><au>Schneider, Tobias M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural convection in a vertical channel. Part 2. Oblique solutions and global bifurcations in a spanwise-extended domain</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>1000</volume><artnum>A29</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Vertical thermal convection is a non-equilibrium system in which both buoyancy and shear forces play a role in driving the convective flow. Beyond the onset of convection, the driven dissipative system exhibits chaotic dynamics and turbulence. In a three-dimensional domain extended in both the vertical and the transverse dimensions, Gao et al. (Phys. Rev. E, vol. 97, 2018, 053107) have observed a variety of convection patterns which are not described by linear stability analysis. We investigate the fully nonlinear dynamics of vertical convection using a dynamical-systems approach based on the Oberbeck–Boussinesq equations. We compute the invariant solutions of these equations and the bifurcations that are responsible for the creation and termination of various branches. We map out a sequence of local bifurcations from the laminar base state, including simultaneous bifurcations involving patterned steady states with different symmetries. This atypical phenomenon of multiple branches simultaneously bifurcating from a single parent branch is explained by the role of $D_4$ symmetry. In addition, two global bifurcations are identified: first, a homoclinic cycle from modulated transverse rolls and second, a heteroclinic cycle linking two symmetry-related diamond-roll patterns. These are confirmed by phase space projections as well as the functional form of the divergence of the period close to the bifurcation points. The heteroclinic orbit is shown to be robust and to result from a 1:2 mode interaction. The intricacy of this bifurcation diagram highlights the essential role played by dynamical systems theory and computation in hydrodynamic configurations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.840</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-9833-1347</orcidid><orcidid>https://orcid.org/0000-0001-5893-9238</orcidid><orcidid>https://orcid.org/0000-0002-8617-8998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-11, Vol.1000, Article A29
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_3132502202
source Cambridge University Press Journals Complete
subjects Bifurcations
Boundary conditions
Boussinesq approximation
Boussinesq equations
Cellular convection
Chaos theory
Convection
Convective flow
Diamonds
Divergence
Dynamic systems theory
Dynamical systems
Free convection
Hydrodynamic configurations
JFM Papers
Nonlinear dynamics
Nonlinear systems
Numerical analysis
Rayleigh number
Shear forces
Stability analysis
Symmetry
Three dimensional flow
Turbulence
Vertical forces
title Natural convection in a vertical channel. Part 2. Oblique solutions and global bifurcations in a spanwise-extended domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20convection%20in%20a%20vertical%20channel.%20Part%202.%20Oblique%20solutions%20and%20global%20bifurcations%20in%20a%20spanwise-extended%20domain&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zheng,%20Zheng&rft.date=2024-11-25&rft.volume=1000&rft.artnum=A29&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.840&rft_dat=%3Cproquest_cross%3E3132502202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132502202&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_840&rfr_iscdi=true