Profile Measurement and Distribution Statistics of Amplitude Scintillation Within the Lowest Tropospheric Layers Using Karasawa Model

Characterizing the variation dynamics of amplitude scintillation within the lowest layers of the troposphere is important for many communication system applications. It provides fast fade statistics used to determine the non-rain-induced fade margin needed for implementing effective fade mitigation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MĀPAN : journal of Metrology Society of India 2024-12, Vol.39 (4), p.863-872
Hauptverfasser: Ashidi, Ayodeji G., Layioye, Okikiade A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 872
container_issue 4
container_start_page 863
container_title MĀPAN : journal of Metrology Society of India
container_volume 39
creator Ashidi, Ayodeji G.
Layioye, Okikiade A.
description Characterizing the variation dynamics of amplitude scintillation within the lowest layers of the troposphere is important for many communication system applications. It provides fast fade statistics used to determine the non-rain-induced fade margin needed for implementing effective fade mitigation techniques on both terrestrial and satellite radio channels. This study employed three-year in-situ data of primary radio-climatic factors (temperature and relative humidity) and radio channel parameters (frequency, elevation angle, and antenna diameter) for estimating tropospheric amplitude scintillation and evaluating its vertical profile over Akure, Nigeria, using the Karasawa scintillation model. The radio-climatic parameters were measured at five altitudinal layers from the surface to a height of 200 m at 50 m interval on a 220 m-tall mast using a Davis Vantage Pro2 automatic weather station at 30 min interval. The extracted data spanned January 2008 to December 2010 (3 years). Radio link parameters frequency, elevation angle, and antenna diameter, with values of 12.5 GHz, 53°, and 0.9 m, respectively, were employed for the computation of scintillation amplitude ( χ ) and intensity ( σ ) along with the weather variables. From the results, the histogram of annual scintillation intensity at all levels was well approximated by the stable probability density function (pdf) distribution model. The magnitude of scintillation intensity was found to be much higher during the rainy season than during the dry season. Minimal differences, between 2 and 8% in magnitude, were observed in the annual averaged amplitude across the levels, but the rainy-dry season dichotomy was conspicuous following monthly analysis. An allowance of 0.5 dB and 0.38 dB is required to counteract the effects of scintillation amplitude fade and enhancement, respectively, at this location.
doi_str_mv 10.1007/s12647-024-00767-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132130213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132130213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a19a9458d72a396f97ddc2948771b38170189498f9c817e730a5b8588f385de53</originalsourceid><addsrcrecordid>eNp9kN9KwzAUxosoOKcv4FXA62jStE1yOeZf3FDYhpcha9Mto0tqklL2AL63cRW88-Jwzgffd87hlyTXGN1ihOidx2mRUYjSDEZZUNifJCPEaQY5y8npcUaQ8BydJxfe7xAqGOJ8lHy9O1vrRoG5kr5zaq9MANJU4F774PS6C9oasAgyRK1LD2wNJvu20aGrFFiU2gTdNPLo-tBhqw0IWwVmtlc-gKWzrfXtVjldgpk8KOfBymuzAa_SSS97Cea2Us1lclbLxqur3z5OVo8Py-kznL09vUwnM1imCAUoMZc8y1lFU0l4UXNaVWXKM0YpXhOGKcKMZ5zVvIxCUYJkvmY5YzVheaVyMk5uhr2ts59d_FDsbOdMPCkIJikmKFZ0pYOrdNZ7p2rROr2X7iAwEj-4xYBbRNziiFv0MUSGkI9ms1Hub_U_qW_rV4UW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132130213</pqid></control><display><type>article</type><title>Profile Measurement and Distribution Statistics of Amplitude Scintillation Within the Lowest Tropospheric Layers Using Karasawa Model</title><source>Springer Nature - Complete Springer Journals</source><creator>Ashidi, Ayodeji G. ; Layioye, Okikiade A.</creator><creatorcontrib>Ashidi, Ayodeji G. ; Layioye, Okikiade A.</creatorcontrib><description>Characterizing the variation dynamics of amplitude scintillation within the lowest layers of the troposphere is important for many communication system applications. It provides fast fade statistics used to determine the non-rain-induced fade margin needed for implementing effective fade mitigation techniques on both terrestrial and satellite radio channels. This study employed three-year in-situ data of primary radio-climatic factors (temperature and relative humidity) and radio channel parameters (frequency, elevation angle, and antenna diameter) for estimating tropospheric amplitude scintillation and evaluating its vertical profile over Akure, Nigeria, using the Karasawa scintillation model. The radio-climatic parameters were measured at five altitudinal layers from the surface to a height of 200 m at 50 m interval on a 220 m-tall mast using a Davis Vantage Pro2 automatic weather station at 30 min interval. The extracted data spanned January 2008 to December 2010 (3 years). Radio link parameters frequency, elevation angle, and antenna diameter, with values of 12.5 GHz, 53°, and 0.9 m, respectively, were employed for the computation of scintillation amplitude ( χ ) and intensity ( σ ) along with the weather variables. From the results, the histogram of annual scintillation intensity at all levels was well approximated by the stable probability density function (pdf) distribution model. The magnitude of scintillation intensity was found to be much higher during the rainy season than during the dry season. Minimal differences, between 2 and 8% in magnitude, were observed in the annual averaged amplitude across the levels, but the rainy-dry season dichotomy was conspicuous following monthly analysis. An allowance of 0.5 dB and 0.38 dB is required to counteract the effects of scintillation amplitude fade and enhancement, respectively, at this location.</description><identifier>ISSN: 0970-3950</identifier><identifier>EISSN: 0974-9853</identifier><identifier>DOI: 10.1007/s12647-024-00767-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Amplitudes ; Antennas ; Automatic weather stations ; Communications systems ; Diameters ; Dry season ; Elevation angle ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Measurement Science and Instrumentation ; Numerical and Computational Physics ; Original Paper ; Parameters ; Physics ; Physics and Astronomy ; Probability density functions ; Profile measurement ; Radio ; Rainy season ; Relative humidity ; Scintillation ; Simulation ; Theoretical ; Troposphere</subject><ispartof>MĀPAN : journal of Metrology Society of India, 2024-12, Vol.39 (4), p.863-872</ispartof><rights>Metrology Society of India 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-a19a9458d72a396f97ddc2948771b38170189498f9c817e730a5b8588f385de53</cites><orcidid>0000-0002-5864-4250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12647-024-00767-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12647-024-00767-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ashidi, Ayodeji G.</creatorcontrib><creatorcontrib>Layioye, Okikiade A.</creatorcontrib><title>Profile Measurement and Distribution Statistics of Amplitude Scintillation Within the Lowest Tropospheric Layers Using Karasawa Model</title><title>MĀPAN : journal of Metrology Society of India</title><addtitle>MAPAN</addtitle><description>Characterizing the variation dynamics of amplitude scintillation within the lowest layers of the troposphere is important for many communication system applications. It provides fast fade statistics used to determine the non-rain-induced fade margin needed for implementing effective fade mitigation techniques on both terrestrial and satellite radio channels. This study employed three-year in-situ data of primary radio-climatic factors (temperature and relative humidity) and radio channel parameters (frequency, elevation angle, and antenna diameter) for estimating tropospheric amplitude scintillation and evaluating its vertical profile over Akure, Nigeria, using the Karasawa scintillation model. The radio-climatic parameters were measured at five altitudinal layers from the surface to a height of 200 m at 50 m interval on a 220 m-tall mast using a Davis Vantage Pro2 automatic weather station at 30 min interval. The extracted data spanned January 2008 to December 2010 (3 years). Radio link parameters frequency, elevation angle, and antenna diameter, with values of 12.5 GHz, 53°, and 0.9 m, respectively, were employed for the computation of scintillation amplitude ( χ ) and intensity ( σ ) along with the weather variables. From the results, the histogram of annual scintillation intensity at all levels was well approximated by the stable probability density function (pdf) distribution model. The magnitude of scintillation intensity was found to be much higher during the rainy season than during the dry season. Minimal differences, between 2 and 8% in magnitude, were observed in the annual averaged amplitude across the levels, but the rainy-dry season dichotomy was conspicuous following monthly analysis. An allowance of 0.5 dB and 0.38 dB is required to counteract the effects of scintillation amplitude fade and enhancement, respectively, at this location.</description><subject>Amplitudes</subject><subject>Antennas</subject><subject>Automatic weather stations</subject><subject>Communications systems</subject><subject>Diameters</subject><subject>Dry season</subject><subject>Elevation angle</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Measurement Science and Instrumentation</subject><subject>Numerical and Computational Physics</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Probability density functions</subject><subject>Profile measurement</subject><subject>Radio</subject><subject>Rainy season</subject><subject>Relative humidity</subject><subject>Scintillation</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Troposphere</subject><issn>0970-3950</issn><issn>0974-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kN9KwzAUxosoOKcv4FXA62jStE1yOeZf3FDYhpcha9Mto0tqklL2AL63cRW88-Jwzgffd87hlyTXGN1ihOidx2mRUYjSDEZZUNifJCPEaQY5y8npcUaQ8BydJxfe7xAqGOJ8lHy9O1vrRoG5kr5zaq9MANJU4F774PS6C9oasAgyRK1LD2wNJvu20aGrFFiU2gTdNPLo-tBhqw0IWwVmtlc-gKWzrfXtVjldgpk8KOfBymuzAa_SSS97Cea2Us1lclbLxqur3z5OVo8Py-kznL09vUwnM1imCAUoMZc8y1lFU0l4UXNaVWXKM0YpXhOGKcKMZ5zVvIxCUYJkvmY5YzVheaVyMk5uhr2ts59d_FDsbOdMPCkIJikmKFZ0pYOrdNZ7p2rROr2X7iAwEj-4xYBbRNziiFv0MUSGkI9ms1Hub_U_qW_rV4UW</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ashidi, Ayodeji G.</creator><creator>Layioye, Okikiade A.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5864-4250</orcidid></search><sort><creationdate>20241201</creationdate><title>Profile Measurement and Distribution Statistics of Amplitude Scintillation Within the Lowest Tropospheric Layers Using Karasawa Model</title><author>Ashidi, Ayodeji G. ; Layioye, Okikiade A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a19a9458d72a396f97ddc2948771b38170189498f9c817e730a5b8588f385de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplitudes</topic><topic>Antennas</topic><topic>Automatic weather stations</topic><topic>Communications systems</topic><topic>Diameters</topic><topic>Dry season</topic><topic>Elevation angle</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Measurement Science and Instrumentation</topic><topic>Numerical and Computational Physics</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Probability density functions</topic><topic>Profile measurement</topic><topic>Radio</topic><topic>Rainy season</topic><topic>Relative humidity</topic><topic>Scintillation</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashidi, Ayodeji G.</creatorcontrib><creatorcontrib>Layioye, Okikiade A.</creatorcontrib><collection>CrossRef</collection><jtitle>MĀPAN : journal of Metrology Society of India</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashidi, Ayodeji G.</au><au>Layioye, Okikiade A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Profile Measurement and Distribution Statistics of Amplitude Scintillation Within the Lowest Tropospheric Layers Using Karasawa Model</atitle><jtitle>MĀPAN : journal of Metrology Society of India</jtitle><stitle>MAPAN</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>39</volume><issue>4</issue><spage>863</spage><epage>872</epage><pages>863-872</pages><issn>0970-3950</issn><eissn>0974-9853</eissn><abstract>Characterizing the variation dynamics of amplitude scintillation within the lowest layers of the troposphere is important for many communication system applications. It provides fast fade statistics used to determine the non-rain-induced fade margin needed for implementing effective fade mitigation techniques on both terrestrial and satellite radio channels. This study employed three-year in-situ data of primary radio-climatic factors (temperature and relative humidity) and radio channel parameters (frequency, elevation angle, and antenna diameter) for estimating tropospheric amplitude scintillation and evaluating its vertical profile over Akure, Nigeria, using the Karasawa scintillation model. The radio-climatic parameters were measured at five altitudinal layers from the surface to a height of 200 m at 50 m interval on a 220 m-tall mast using a Davis Vantage Pro2 automatic weather station at 30 min interval. The extracted data spanned January 2008 to December 2010 (3 years). Radio link parameters frequency, elevation angle, and antenna diameter, with values of 12.5 GHz, 53°, and 0.9 m, respectively, were employed for the computation of scintillation amplitude ( χ ) and intensity ( σ ) along with the weather variables. From the results, the histogram of annual scintillation intensity at all levels was well approximated by the stable probability density function (pdf) distribution model. The magnitude of scintillation intensity was found to be much higher during the rainy season than during the dry season. Minimal differences, between 2 and 8% in magnitude, were observed in the annual averaged amplitude across the levels, but the rainy-dry season dichotomy was conspicuous following monthly analysis. An allowance of 0.5 dB and 0.38 dB is required to counteract the effects of scintillation amplitude fade and enhancement, respectively, at this location.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12647-024-00767-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5864-4250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0970-3950
ispartof MĀPAN : journal of Metrology Society of India, 2024-12, Vol.39 (4), p.863-872
issn 0970-3950
0974-9853
language eng
recordid cdi_proquest_journals_3132130213
source Springer Nature - Complete Springer Journals
subjects Amplitudes
Antennas
Automatic weather stations
Communications systems
Diameters
Dry season
Elevation angle
Mathematical and Computational Physics
Mathematical Methods in Physics
Measurement Science and Instrumentation
Numerical and Computational Physics
Original Paper
Parameters
Physics
Physics and Astronomy
Probability density functions
Profile measurement
Radio
Rainy season
Relative humidity
Scintillation
Simulation
Theoretical
Troposphere
title Profile Measurement and Distribution Statistics of Amplitude Scintillation Within the Lowest Tropospheric Layers Using Karasawa Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Profile%20Measurement%20and%20Distribution%20Statistics%20of%20Amplitude%20Scintillation%20Within%20the%20Lowest%20Tropospheric%20Layers%20Using%20Karasawa%20Model&rft.jtitle=M%C4%80PAN%20:%20journal%20of%20Metrology%20Society%20of%20India&rft.au=Ashidi,%20Ayodeji%20G.&rft.date=2024-12-01&rft.volume=39&rft.issue=4&rft.spage=863&rft.epage=872&rft.pages=863-872&rft.issn=0970-3950&rft.eissn=0974-9853&rft_id=info:doi/10.1007/s12647-024-00767-w&rft_dat=%3Cproquest_cross%3E3132130213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132130213&rft_id=info:pmid/&rfr_iscdi=true