Mitigating communications threats in decentralized federated learning through moving target defense

The rise of Decentralized Federated Learning (DFL) has enabled the training of machine learning models across federated participants, fostering decentralized model aggregation and reducing dependence on a server. However, this approach introduces unique communication security challenges that have ye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks 2024-12, Vol.30 (9), p.7407-7421
Hauptverfasser: Martínez Beltrán, Enrique Tomás, Sánchez Sánchez, Pedro Miguel, López Bernal, Sergio, Bovet, Gérôme, Gil Pérez, Manuel, Martínez Pérez, Gregorio, Huertas Celdrán, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!