Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control
We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kim, Hansung Zhu, Edward L Lim, Chang Seok Borrelli, Francesco |
description | We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3131952298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131952298</sourcerecordid><originalsourceid>FETCH-proquest_journals_31319522983</originalsourceid><addsrcrecordid>eNqNjMsKwjAQAIMgKOo_LHgutIn1cRYfBxVB7xLttq7ErG5SBb9eET_A0xxmmIZqa2OyZDzQuqV6IVzSNNXDkc5z01ZuhVY8-Qr2T05shT7CmiOxh62z_mt2UWzEijBAKXyFBXoU6-iFBWxsOMPsXpOjo1B9hZLlMyjQwVawoFOkB8KUfRR2XdUsrQvY-7Gj-vPZfrpMbsL3GkM8XLgW_1EHk5lskms9GZv_qjeqd0mN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131952298</pqid></control><display><type>article</type><title>Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control</title><source>Free E- Journals</source><creator>Kim, Hansung ; Zhu, Edward L ; Lim, Chang Seok ; Borrelli, Francesco</creator><creatorcontrib>Kim, Hansung ; Zhu, Edward L ; Lim, Chang Seok ; Borrelli, Francesco</creatorcontrib><description>We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Constraints ; Game theory ; Initial conditions ; Machine learning ; Motion planning ; Multiagent systems ; Neural networks ; Predictive control</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kim, Hansung</creatorcontrib><creatorcontrib>Zhu, Edward L</creatorcontrib><creatorcontrib>Lim, Chang Seok</creatorcontrib><creatorcontrib>Borrelli, Francesco</creatorcontrib><title>Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control</title><title>arXiv.org</title><description>We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Game theory</subject><subject>Initial conditions</subject><subject>Machine learning</subject><subject>Motion planning</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Predictive control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQAIMgKOo_LHgutIn1cRYfBxVB7xLttq7ErG5SBb9eET_A0xxmmIZqa2OyZDzQuqV6IVzSNNXDkc5z01ZuhVY8-Qr2T05shT7CmiOxh62z_mt2UWzEijBAKXyFBXoU6-iFBWxsOMPsXpOjo1B9hZLlMyjQwVawoFOkB8KUfRR2XdUsrQvY-7Gj-vPZfrpMbsL3GkM8XLgW_1EHk5lskms9GZv_qjeqd0mN</recordid><startdate>20241123</startdate><enddate>20241123</enddate><creator>Kim, Hansung</creator><creator>Zhu, Edward L</creator><creator>Lim, Chang Seok</creator><creator>Borrelli, Francesco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241123</creationdate><title>Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control</title><author>Kim, Hansung ; Zhu, Edward L ; Lim, Chang Seok ; Borrelli, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31319522983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Game theory</topic><topic>Initial conditions</topic><topic>Machine learning</topic><topic>Motion planning</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Predictive control</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hansung</creatorcontrib><creatorcontrib>Zhu, Edward L</creatorcontrib><creatorcontrib>Lim, Chang Seok</creatorcontrib><creatorcontrib>Borrelli, Francesco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hansung</au><au>Zhu, Edward L</au><au>Lim, Chang Seok</au><au>Borrelli, Francesco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control</atitle><jtitle>arXiv.org</jtitle><date>2024-11-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3131952298 |
source | Free E- Journals |
subjects | Algorithms Constraints Game theory Initial conditions Machine learning Motion planning Multiagent systems Neural networks Predictive control |
title | Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Two-agent%20Motion%20Planning%20Strategies%20from%20Generalized%20Nash%20Equilibrium%20for%20Model%20Predictive%20Control&rft.jtitle=arXiv.org&rft.au=Kim,%20Hansung&rft.date=2024-11-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3131952298%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131952298&rft_id=info:pmid/&rfr_iscdi=true |