Evaluating 5G-Enabled Medical Devices: Failure Modes Analysis and Graph Database Implementation
The use of wireless connectivity in medical devices is increasingly widespread. 5G communication emerges as a promising wireless modality with its advancements in throughput and latency performance that can benefit existing and new use cases in healthcare applications. However, there are no standard...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.170514-170529 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170529 |
---|---|
container_issue | |
container_start_page | 170514 |
container_title | IEEE access |
container_volume | 12 |
creator | Gao, Weichao Liu, Yongkang Omar Al Kalaa, Mohamad |
description | The use of wireless connectivity in medical devices is increasingly widespread. 5G communication emerges as a promising wireless modality with its advancements in throughput and latency performance that can benefit existing and new use cases in healthcare applications. However, there are no standardized evaluation methods for assessing the impact of 5G communication failures on medical device functions. This gap has been acknowledged by industry stakeholders in both the medical device and telecommunication fields. To help address this issue, we propose in this paper a testing framework for evaluating 5G-enabled medical devices, which incorporates a comprehensive analysis of potential 5G failure modes along with a prioritization approach to focus network failure tests specifically on those most pertinent to the device under test. We outline the implementation of the testing framework using a graph database methodology and demonstrate representative test cases to validate the feasibility of the framework. The outcome is a flexible method that could be used by medical device developers, network operators, test lab engineers, and regulators for assessing the use of 5G connectivity in medical device functions. |
doi_str_mv | 10.1109/ACCESS.2024.3501852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131914419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10756688</ieee_id><doaj_id>oai_doaj_org_article_8670475a017943d0a73d025044a8aafb</doaj_id><sourcerecordid>3131914419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-99252a0d2814c979cd448ae3dea6e02472a8bfa8e8549599e3f371c77a789e933</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX-BHgKet-Zzk3grta0FxYN6DtPNrKZsd2uyFfz3RlfEOcwMj3lveLyiuGB0whi119PZbP70NOGUy4lQlBnFD4oTzipbCiWqw3_7cXGe0obmMhlS-qRw8w9o9zCE7pWoZTnvYN2iJw_oQw0tucWPUGO6IQsI7T4ieeg9JjLtoP1MIRHoPFlG2L2RWxhgDQnJartrcYvdkEX77qw4aqBNeP47T4uXxfx5dlfePy5Xs-l9WXMph9JarjhQzw2TtdW29lIaQOERKszGNAezbsCgUdIqa1E0QrNaa9DGohXitFiNur6HjdvFsIX46XoI7gfo46uDOIS6RWcqTaVWQJm2UngKOjeuqJRgAJp11roatXaxf99jGtym38dsOTnBBLNMSmbzlRiv6tinFLH5-8qo-w7GjcG472DcbzCZdTmyAiL-Y2hVVcaIL9w2h4Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131914419</pqid></control><display><type>article</type><title>Evaluating 5G-Enabled Medical Devices: Failure Modes Analysis and Graph Database Implementation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gao, Weichao ; Liu, Yongkang ; Omar Al Kalaa, Mohamad</creator><creatorcontrib>Gao, Weichao ; Liu, Yongkang ; Omar Al Kalaa, Mohamad</creatorcontrib><description>The use of wireless connectivity in medical devices is increasingly widespread. 5G communication emerges as a promising wireless modality with its advancements in throughput and latency performance that can benefit existing and new use cases in healthcare applications. However, there are no standardized evaluation methods for assessing the impact of 5G communication failures on medical device functions. This gap has been acknowledged by industry stakeholders in both the medical device and telecommunication fields. To help address this issue, we propose in this paper a testing framework for evaluating 5G-enabled medical devices, which incorporates a comprehensive analysis of potential 5G failure modes along with a prioritization approach to focus network failure tests specifically on those most pertinent to the device under test. We outline the implementation of the testing framework using a graph database methodology and demonstrate representative test cases to validate the feasibility of the framework. The outcome is a flexible method that could be used by medical device developers, network operators, test lab engineers, and regulators for assessing the use of 5G connectivity in medical device functions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3501852</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3GPP ; 5G mobile communication ; Cellular networks ; Failure ; Failure analysis ; Failure modes ; Graph theory ; medical device ; Medical devices ; Medical electronics ; Medical equipment ; Medical technology ; Network latency ; Performance evaluation ; Reliability ; Telecommunication network reliability ; Testing ; Wireless communication ; Wireless communications</subject><ispartof>IEEE access, 2024, Vol.12, p.170514-170529</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7435-4870 ; 0000-0002-0011-322X ; 0000-0003-1881-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10756688$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Gao, Weichao</creatorcontrib><creatorcontrib>Liu, Yongkang</creatorcontrib><creatorcontrib>Omar Al Kalaa, Mohamad</creatorcontrib><title>Evaluating 5G-Enabled Medical Devices: Failure Modes Analysis and Graph Database Implementation</title><title>IEEE access</title><addtitle>Access</addtitle><description>The use of wireless connectivity in medical devices is increasingly widespread. 5G communication emerges as a promising wireless modality with its advancements in throughput and latency performance that can benefit existing and new use cases in healthcare applications. However, there are no standardized evaluation methods for assessing the impact of 5G communication failures on medical device functions. This gap has been acknowledged by industry stakeholders in both the medical device and telecommunication fields. To help address this issue, we propose in this paper a testing framework for evaluating 5G-enabled medical devices, which incorporates a comprehensive analysis of potential 5G failure modes along with a prioritization approach to focus network failure tests specifically on those most pertinent to the device under test. We outline the implementation of the testing framework using a graph database methodology and demonstrate representative test cases to validate the feasibility of the framework. The outcome is a flexible method that could be used by medical device developers, network operators, test lab engineers, and regulators for assessing the use of 5G connectivity in medical device functions.</description><subject>3GPP</subject><subject>5G mobile communication</subject><subject>Cellular networks</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Graph theory</subject><subject>medical device</subject><subject>Medical devices</subject><subject>Medical electronics</subject><subject>Medical equipment</subject><subject>Medical technology</subject><subject>Network latency</subject><subject>Performance evaluation</subject><subject>Reliability</subject><subject>Telecommunication network reliability</subject><subject>Testing</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX-BHgKet-Zzk3grta0FxYN6DtPNrKZsd2uyFfz3RlfEOcwMj3lveLyiuGB0whi119PZbP70NOGUy4lQlBnFD4oTzipbCiWqw3_7cXGe0obmMhlS-qRw8w9o9zCE7pWoZTnvYN2iJw_oQw0tucWPUGO6IQsI7T4ieeg9JjLtoP1MIRHoPFlG2L2RWxhgDQnJartrcYvdkEX77qw4aqBNeP47T4uXxfx5dlfePy5Xs-l9WXMph9JarjhQzw2TtdW29lIaQOERKszGNAezbsCgUdIqa1E0QrNaa9DGohXitFiNur6HjdvFsIX46XoI7gfo46uDOIS6RWcqTaVWQJm2UngKOjeuqJRgAJp11roatXaxf99jGtym38dsOTnBBLNMSmbzlRiv6tinFLH5-8qo-w7GjcG472DcbzCZdTmyAiL-Y2hVVcaIL9w2h4Y</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Weichao</creator><creator>Liu, Yongkang</creator><creator>Omar Al Kalaa, Mohamad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7435-4870</orcidid><orcidid>https://orcid.org/0000-0002-0011-322X</orcidid><orcidid>https://orcid.org/0000-0003-1881-8364</orcidid></search><sort><creationdate>2024</creationdate><title>Evaluating 5G-Enabled Medical Devices: Failure Modes Analysis and Graph Database Implementation</title><author>Gao, Weichao ; Liu, Yongkang ; Omar Al Kalaa, Mohamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-99252a0d2814c979cd448ae3dea6e02472a8bfa8e8549599e3f371c77a789e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3GPP</topic><topic>5G mobile communication</topic><topic>Cellular networks</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Graph theory</topic><topic>medical device</topic><topic>Medical devices</topic><topic>Medical electronics</topic><topic>Medical equipment</topic><topic>Medical technology</topic><topic>Network latency</topic><topic>Performance evaluation</topic><topic>Reliability</topic><topic>Telecommunication network reliability</topic><topic>Testing</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Weichao</creatorcontrib><creatorcontrib>Liu, Yongkang</creatorcontrib><creatorcontrib>Omar Al Kalaa, Mohamad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Weichao</au><au>Liu, Yongkang</au><au>Omar Al Kalaa, Mohamad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating 5G-Enabled Medical Devices: Failure Modes Analysis and Graph Database Implementation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>170514</spage><epage>170529</epage><pages>170514-170529</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The use of wireless connectivity in medical devices is increasingly widespread. 5G communication emerges as a promising wireless modality with its advancements in throughput and latency performance that can benefit existing and new use cases in healthcare applications. However, there are no standardized evaluation methods for assessing the impact of 5G communication failures on medical device functions. This gap has been acknowledged by industry stakeholders in both the medical device and telecommunication fields. To help address this issue, we propose in this paper a testing framework for evaluating 5G-enabled medical devices, which incorporates a comprehensive analysis of potential 5G failure modes along with a prioritization approach to focus network failure tests specifically on those most pertinent to the device under test. We outline the implementation of the testing framework using a graph database methodology and demonstrate representative test cases to validate the feasibility of the framework. The outcome is a flexible method that could be used by medical device developers, network operators, test lab engineers, and regulators for assessing the use of 5G connectivity in medical device functions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3501852</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7435-4870</orcidid><orcidid>https://orcid.org/0000-0002-0011-322X</orcidid><orcidid>https://orcid.org/0000-0003-1881-8364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.170514-170529 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3131914419 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 3GPP 5G mobile communication Cellular networks Failure Failure analysis Failure modes Graph theory medical device Medical devices Medical electronics Medical equipment Medical technology Network latency Performance evaluation Reliability Telecommunication network reliability Testing Wireless communication Wireless communications |
title | Evaluating 5G-Enabled Medical Devices: Failure Modes Analysis and Graph Database Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%205G-Enabled%20Medical%20Devices:%20Failure%20Modes%20Analysis%20and%20Graph%20Database%20Implementation&rft.jtitle=IEEE%20access&rft.au=Gao,%20Weichao&rft.date=2024&rft.volume=12&rft.spage=170514&rft.epage=170529&rft.pages=170514-170529&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3501852&rft_dat=%3Cproquest_cross%3E3131914419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131914419&rft_id=info:pmid/&rft_ieee_id=10756688&rft_doaj_id=oai_doaj_org_article_8670475a017943d0a73d025044a8aafb&rfr_iscdi=true |