Lightweight Federated Learning for Efficient Network Intrusion Detection

Network Intrusion Detection Systems (NIDS) play a crucial role in ensuring cybersecurity across various digital infrastructures. However, traditional NIDS face significant challenges, including high computational and storage costs, as well as privacy risks. To address these issues, we introduce a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.172027-172045
Hauptverfasser: Bouayad, Abdelhak, Alami, Hamza, Janati Idrissi, Meryem, Berrada, Ismail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172045
container_issue
container_start_page 172027
container_title IEEE access
container_volume 12
creator Bouayad, Abdelhak
Alami, Hamza
Janati Idrissi, Meryem
Berrada, Ismail
description Network Intrusion Detection Systems (NIDS) play a crucial role in ensuring cybersecurity across various digital infrastructures. However, traditional NIDS face significant challenges, including high computational and storage costs, as well as privacy risks. To address these issues, we introduce a novel method called "Lightweight-Fed-NIDS," which harnesses federated learning and structured model pruning techniques for NIDS. The primary advantage of our contribution lies in the one-time computation of the pruning mask, without the need to access clients' data. This mask is then distributed to all clients and utilized to prune and optimize their local models. Furthermore, we leverage the power of Convolutional Neural Network (CNN) architectures, including ResNet-50, ResNet-101, and VGG-19, to extract essential features from raw traffic flows. We evaluate the performance of our method using various NIDS benchmark datasets, such as UNSW-NB15, USTC-TFC2016, and CIC-IDS-2017. Our technique achieves up to a 3X acceleration in training time compared to traditional, unpruned federated learning models, while maintaining a high detection rate of \sim ~99 %. Additionally, our method reduces model size by 90%, demonstrating its efficiency and scalability for real-world NIDS deployments. These results highlight the potential of Lightweight-Fed-NIDS to enhance network security while addressing privacy concerns and resource constraints in distributed environments.
doi_str_mv 10.1109/ACCESS.2024.3494057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131914008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10747349</ieee_id><doaj_id>oai_doaj_org_article_2458e3c55a9b4ed7a0d461f3c79f232b</doaj_id><sourcerecordid>3131914008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ab3116912c36471894fb3d91ee6cf639be8e71706b49bd5d88a23c8103d5a4743</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBIoMEXwKES540kTpvmiMbGJk1wAM5RmjgjA5qRZpr4ezKKED7YlvXes-VXFJeUTCgl8uZ2Op09PU0YYXwCXHJSiaPijNFajqGC-vhff1pc9P2G5GjyqBJnxWLl169pj4dcztFi1AltuUIdO9-tSxdiOXPOG49dKh8w7UN8K5ddirveh668w4Qm5e68OHH6vceL3zoqXuaz5-livHq8X05vV2PDOE9j3QLNqykzUHNBG8ldC1ZSxNq4GmSLDQoqSN1y2drKNo1mYBpKwFaaCw6jYjno2qA3ahv9h45fKmivfgYhrpWOyZt3VIxXDYKpKi1bjlZoYnlNHRghHQPWZq3rQWsbw-cO-6Q2YRe7fL4CClRSnh-VUTCgTAx9H9H9baVEHRxQgwPq4ID6dSCzrgaWR8R_DMFFhsA3-ByA2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131914008</pqid></control><display><type>article</type><title>Lightweight Federated Learning for Efficient Network Intrusion Detection</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Bouayad, Abdelhak ; Alami, Hamza ; Janati Idrissi, Meryem ; Berrada, Ismail</creator><creatorcontrib>Bouayad, Abdelhak ; Alami, Hamza ; Janati Idrissi, Meryem ; Berrada, Ismail</creatorcontrib><description>Network Intrusion Detection Systems (NIDS) play a crucial role in ensuring cybersecurity across various digital infrastructures. However, traditional NIDS face significant challenges, including high computational and storage costs, as well as privacy risks. To address these issues, we introduce a novel method called "Lightweight-Fed-NIDS," which harnesses federated learning and structured model pruning techniques for NIDS. The primary advantage of our contribution lies in the one-time computation of the pruning mask, without the need to access clients' data. This mask is then distributed to all clients and utilized to prune and optimize their local models. Furthermore, we leverage the power of Convolutional Neural Network (CNN) architectures, including ResNet-50, ResNet-101, and VGG-19, to extract essential features from raw traffic flows. We evaluate the performance of our method using various NIDS benchmark datasets, such as UNSW-NB15, USTC-TFC2016, and CIC-IDS-2017. Our technique achieves up to a 3X acceleration in training time compared to traditional, unpruned federated learning models, while maintaining a high detection rate of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sim ~99 &lt;/tex-math&gt;&lt;/inline-formula&gt;%. Additionally, our method reduces model size by 90%, demonstrating its efficiency and scalability for real-world NIDS deployments. These results highlight the potential of Lightweight-Fed-NIDS to enhance network security while addressing privacy concerns and resource constraints in distributed environments.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3494057</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Analytical models ; Artificial neural networks ; Clients ; Computational modeling ; Computer architecture ; Cybersecurity ; Data models ; Deep learning ; Feature extraction ; Federated learning ; Harnesses ; Intrusion detection ; Intrusion detection systems ; Lightweight ; Machine learning ; Network intrusion detection system ; Privacy ; Pruning ; Servers ; Telecommunication traffic ; Training ; Weight reduction</subject><ispartof>IEEE access, 2024, Vol.12, p.172027-172045</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-ab3116912c36471894fb3d91ee6cf639be8e71706b49bd5d88a23c8103d5a4743</cites><orcidid>0000-0001-8554-3810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10747349$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Bouayad, Abdelhak</creatorcontrib><creatorcontrib>Alami, Hamza</creatorcontrib><creatorcontrib>Janati Idrissi, Meryem</creatorcontrib><creatorcontrib>Berrada, Ismail</creatorcontrib><title>Lightweight Federated Learning for Efficient Network Intrusion Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Network Intrusion Detection Systems (NIDS) play a crucial role in ensuring cybersecurity across various digital infrastructures. However, traditional NIDS face significant challenges, including high computational and storage costs, as well as privacy risks. To address these issues, we introduce a novel method called "Lightweight-Fed-NIDS," which harnesses federated learning and structured model pruning techniques for NIDS. The primary advantage of our contribution lies in the one-time computation of the pruning mask, without the need to access clients' data. This mask is then distributed to all clients and utilized to prune and optimize their local models. Furthermore, we leverage the power of Convolutional Neural Network (CNN) architectures, including ResNet-50, ResNet-101, and VGG-19, to extract essential features from raw traffic flows. We evaluate the performance of our method using various NIDS benchmark datasets, such as UNSW-NB15, USTC-TFC2016, and CIC-IDS-2017. Our technique achieves up to a 3X acceleration in training time compared to traditional, unpruned federated learning models, while maintaining a high detection rate of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sim ~99 &lt;/tex-math&gt;&lt;/inline-formula&gt;%. Additionally, our method reduces model size by 90%, demonstrating its efficiency and scalability for real-world NIDS deployments. These results highlight the potential of Lightweight-Fed-NIDS to enhance network security while addressing privacy concerns and resource constraints in distributed environments.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Artificial neural networks</subject><subject>Clients</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Cybersecurity</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Federated learning</subject><subject>Harnesses</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Network intrusion detection system</subject><subject>Privacy</subject><subject>Pruning</subject><subject>Servers</subject><subject>Telecommunication traffic</subject><subject>Training</subject><subject>Weight reduction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBIoMEXwKES540kTpvmiMbGJk1wAM5RmjgjA5qRZpr4ezKKED7YlvXes-VXFJeUTCgl8uZ2Op09PU0YYXwCXHJSiaPijNFajqGC-vhff1pc9P2G5GjyqBJnxWLl169pj4dcztFi1AltuUIdO9-tSxdiOXPOG49dKh8w7UN8K5ddirveh668w4Qm5e68OHH6vceL3zoqXuaz5-livHq8X05vV2PDOE9j3QLNqykzUHNBG8ldC1ZSxNq4GmSLDQoqSN1y2drKNo1mYBpKwFaaCw6jYjno2qA3ahv9h45fKmivfgYhrpWOyZt3VIxXDYKpKi1bjlZoYnlNHRghHQPWZq3rQWsbw-cO-6Q2YRe7fL4CClRSnh-VUTCgTAx9H9H9baVEHRxQgwPq4ID6dSCzrgaWR8R_DMFFhsA3-ByA2A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bouayad, Abdelhak</creator><creator>Alami, Hamza</creator><creator>Janati Idrissi, Meryem</creator><creator>Berrada, Ismail</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8554-3810</orcidid></search><sort><creationdate>2024</creationdate><title>Lightweight Federated Learning for Efficient Network Intrusion Detection</title><author>Bouayad, Abdelhak ; Alami, Hamza ; Janati Idrissi, Meryem ; Berrada, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ab3116912c36471894fb3d91ee6cf639be8e71706b49bd5d88a23c8103d5a4743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Artificial neural networks</topic><topic>Clients</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Cybersecurity</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Federated learning</topic><topic>Harnesses</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Network intrusion detection system</topic><topic>Privacy</topic><topic>Pruning</topic><topic>Servers</topic><topic>Telecommunication traffic</topic><topic>Training</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouayad, Abdelhak</creatorcontrib><creatorcontrib>Alami, Hamza</creatorcontrib><creatorcontrib>Janati Idrissi, Meryem</creatorcontrib><creatorcontrib>Berrada, Ismail</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouayad, Abdelhak</au><au>Alami, Hamza</au><au>Janati Idrissi, Meryem</au><au>Berrada, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Federated Learning for Efficient Network Intrusion Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>172027</spage><epage>172045</epage><pages>172027-172045</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Network Intrusion Detection Systems (NIDS) play a crucial role in ensuring cybersecurity across various digital infrastructures. However, traditional NIDS face significant challenges, including high computational and storage costs, as well as privacy risks. To address these issues, we introduce a novel method called "Lightweight-Fed-NIDS," which harnesses federated learning and structured model pruning techniques for NIDS. The primary advantage of our contribution lies in the one-time computation of the pruning mask, without the need to access clients' data. This mask is then distributed to all clients and utilized to prune and optimize their local models. Furthermore, we leverage the power of Convolutional Neural Network (CNN) architectures, including ResNet-50, ResNet-101, and VGG-19, to extract essential features from raw traffic flows. We evaluate the performance of our method using various NIDS benchmark datasets, such as UNSW-NB15, USTC-TFC2016, and CIC-IDS-2017. Our technique achieves up to a 3X acceleration in training time compared to traditional, unpruned federated learning models, while maintaining a high detection rate of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sim ~99 &lt;/tex-math&gt;&lt;/inline-formula&gt;%. Additionally, our method reduces model size by 90%, demonstrating its efficiency and scalability for real-world NIDS deployments. These results highlight the potential of Lightweight-Fed-NIDS to enhance network security while addressing privacy concerns and resource constraints in distributed environments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3494057</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8554-3810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.172027-172045
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3131914008
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Accuracy
Analytical models
Artificial neural networks
Clients
Computational modeling
Computer architecture
Cybersecurity
Data models
Deep learning
Feature extraction
Federated learning
Harnesses
Intrusion detection
Intrusion detection systems
Lightweight
Machine learning
Network intrusion detection system
Privacy
Pruning
Servers
Telecommunication traffic
Training
Weight reduction
title Lightweight Federated Learning for Efficient Network Intrusion Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Federated%20Learning%20for%20Efficient%20Network%20Intrusion%20Detection&rft.jtitle=IEEE%20access&rft.au=Bouayad,%20Abdelhak&rft.date=2024&rft.volume=12&rft.spage=172027&rft.epage=172045&rft.pages=172027-172045&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3494057&rft_dat=%3Cproquest_cross%3E3131914008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131914008&rft_id=info:pmid/&rft_ieee_id=10747349&rft_doaj_id=oai_doaj_org_article_2458e3c55a9b4ed7a0d461f3c79f232b&rfr_iscdi=true