ERCO-Net: Enhancing Image Dehazing for Optimized Detail Retention
Image dehazing is a crucial preprocessing step in computer vision for enhancing image quality and enabling many downstream applications. However, existing methods often do not accurately restore hazy images while maintaining computational efficiency. To overcome this challenge, we propose ERCO-Net a...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2024-01, Vol.15 (10) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 15 |
creator | Sabir, Muhammad Ayub Ashraf, Fatima Sajid, Ahthasham Innab, Nisreen Alrowili, Reem Yasin, Yazeed |
description | Image dehazing is a crucial preprocessing step in computer vision for enhancing image quality and enabling many downstream applications. However, existing methods often do not accurately restore hazy images while maintaining computational efficiency. To overcome this challenge, we propose ERCO-Net a new fusion framework that combines edge restriction and contextual optimization methods. By using boundary constraints, ERCO-Net extend the boundaries that help in protecting the edges and structures of an image. Contextual optimization impacts the final quality of the dehazed image by enhancing smoothness and coherence. We compare ERCO-Net with conventional approaches such as dark channel prior (DCP), All-in-one dehazing network (AoD), and Feature fusion attention network (FFA-Net). The comparative evaluation highlights the effectiveness of the proposed fusion method, providing significant improvement in image clarity, contrast, and colors. The combination of edge restriction and contextual optimization not only enhances the quality of dehazing but also decreases computational complexity, presenting a promising avenue for advancing image restoration techniques. The source code is available at https://github.com/FatimaAyub12/Image-Dehazing-. |
doi_str_mv | 10.14569/IJACSA.2024.01510114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131836894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131836894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-c557377eabc73a101e6bd98276a14f579b2a2d7272c7c5de236f9d48e70009613</originalsourceid><addsrcrecordid>eNo1kF9LwzAUxYMoOOY-glDwuTM3aZLGt1KnVoaFqeBbSNN069jamWYP7tObbXpf7h8O9xx-CN0CnkLCuLwvXrP8PZsSTJIpBgYYILlAIwKMx4wJfHma0xiw-LpGk2FY41BUEp7SEcpmi7yM36x_iGbdSnem7ZZRsdVLGz3alT4c16Z3Ubnz7bY92DqcvW430cJ62_m2727QVaM3g5389TH6fJp95C_xvHwu8mweG4K5j03IQoWwujKC6pDS8qqWKRFcQ9IwISuiSS2IIEYYVltCeSPrJLUipJUc6Bjdnf_uXP-9t4NX637vumCpKFBIKU9lElTsrDKuHwZnG7Vz7Va7HwVYnYCpMzB1BKb-gdFf2txb6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131836894</pqid></control><display><type>article</type><title>ERCO-Net: Enhancing Image Dehazing for Optimized Detail Retention</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sabir, Muhammad Ayub ; Ashraf, Fatima ; Sajid, Ahthasham ; Innab, Nisreen ; Alrowili, Reem ; Yasin, Yazeed</creator><creatorcontrib>Sabir, Muhammad Ayub ; Ashraf, Fatima ; Sajid, Ahthasham ; Innab, Nisreen ; Alrowili, Reem ; Yasin, Yazeed</creatorcontrib><description>Image dehazing is a crucial preprocessing step in computer vision for enhancing image quality and enabling many downstream applications. However, existing methods often do not accurately restore hazy images while maintaining computational efficiency. To overcome this challenge, we propose ERCO-Net a new fusion framework that combines edge restriction and contextual optimization methods. By using boundary constraints, ERCO-Net extend the boundaries that help in protecting the edges and structures of an image. Contextual optimization impacts the final quality of the dehazed image by enhancing smoothness and coherence. We compare ERCO-Net with conventional approaches such as dark channel prior (DCP), All-in-one dehazing network (AoD), and Feature fusion attention network (FFA-Net). The comparative evaluation highlights the effectiveness of the proposed fusion method, providing significant improvement in image clarity, contrast, and colors. The combination of edge restriction and contextual optimization not only enhances the quality of dehazing but also decreases computational complexity, presenting a promising avenue for advancing image restoration techniques. The source code is available at https://github.com/FatimaAyub12/Image-Dehazing-.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2024.01510114</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Computer science ; Computer vision ; Deep learning ; Efficiency ; Image contrast ; Image enhancement ; Image quality ; Image restoration ; Literature reviews ; Neural networks ; Optimization ; Optimization techniques ; Smoothness ; Source code</subject><ispartof>International journal of advanced computer science & applications, 2024-01, Vol.15 (10)</ispartof><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sabir, Muhammad Ayub</creatorcontrib><creatorcontrib>Ashraf, Fatima</creatorcontrib><creatorcontrib>Sajid, Ahthasham</creatorcontrib><creatorcontrib>Innab, Nisreen</creatorcontrib><creatorcontrib>Alrowili, Reem</creatorcontrib><creatorcontrib>Yasin, Yazeed</creatorcontrib><title>ERCO-Net: Enhancing Image Dehazing for Optimized Detail Retention</title><title>International journal of advanced computer science & applications</title><description>Image dehazing is a crucial preprocessing step in computer vision for enhancing image quality and enabling many downstream applications. However, existing methods often do not accurately restore hazy images while maintaining computational efficiency. To overcome this challenge, we propose ERCO-Net a new fusion framework that combines edge restriction and contextual optimization methods. By using boundary constraints, ERCO-Net extend the boundaries that help in protecting the edges and structures of an image. Contextual optimization impacts the final quality of the dehazed image by enhancing smoothness and coherence. We compare ERCO-Net with conventional approaches such as dark channel prior (DCP), All-in-one dehazing network (AoD), and Feature fusion attention network (FFA-Net). The comparative evaluation highlights the effectiveness of the proposed fusion method, providing significant improvement in image clarity, contrast, and colors. The combination of edge restriction and contextual optimization not only enhances the quality of dehazing but also decreases computational complexity, presenting a promising avenue for advancing image restoration techniques. The source code is available at https://github.com/FatimaAyub12/Image-Dehazing-.</description><subject>Computer science</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Literature reviews</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Smoothness</subject><subject>Source code</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kF9LwzAUxYMoOOY-glDwuTM3aZLGt1KnVoaFqeBbSNN069jamWYP7tObbXpf7h8O9xx-CN0CnkLCuLwvXrP8PZsSTJIpBgYYILlAIwKMx4wJfHma0xiw-LpGk2FY41BUEp7SEcpmi7yM36x_iGbdSnem7ZZRsdVLGz3alT4c16Z3Ubnz7bY92DqcvW430cJ62_m2727QVaM3g5389TH6fJp95C_xvHwu8mweG4K5j03IQoWwujKC6pDS8qqWKRFcQ9IwISuiSS2IIEYYVltCeSPrJLUipJUc6Bjdnf_uXP-9t4NX637vumCpKFBIKU9lElTsrDKuHwZnG7Vz7Va7HwVYnYCpMzB1BKb-gdFf2txb6A</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Sabir, Muhammad Ayub</creator><creator>Ashraf, Fatima</creator><creator>Sajid, Ahthasham</creator><creator>Innab, Nisreen</creator><creator>Alrowili, Reem</creator><creator>Yasin, Yazeed</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20240101</creationdate><title>ERCO-Net: Enhancing Image Dehazing for Optimized Detail Retention</title><author>Sabir, Muhammad Ayub ; Ashraf, Fatima ; Sajid, Ahthasham ; Innab, Nisreen ; Alrowili, Reem ; Yasin, Yazeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-c557377eabc73a101e6bd98276a14f579b2a2d7272c7c5de236f9d48e70009613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer science</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Literature reviews</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Smoothness</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Sabir, Muhammad Ayub</creatorcontrib><creatorcontrib>Ashraf, Fatima</creatorcontrib><creatorcontrib>Sajid, Ahthasham</creatorcontrib><creatorcontrib>Innab, Nisreen</creatorcontrib><creatorcontrib>Alrowili, Reem</creatorcontrib><creatorcontrib>Yasin, Yazeed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabir, Muhammad Ayub</au><au>Ashraf, Fatima</au><au>Sajid, Ahthasham</au><au>Innab, Nisreen</au><au>Alrowili, Reem</au><au>Yasin, Yazeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ERCO-Net: Enhancing Image Dehazing for Optimized Detail Retention</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issue>10</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Image dehazing is a crucial preprocessing step in computer vision for enhancing image quality and enabling many downstream applications. However, existing methods often do not accurately restore hazy images while maintaining computational efficiency. To overcome this challenge, we propose ERCO-Net a new fusion framework that combines edge restriction and contextual optimization methods. By using boundary constraints, ERCO-Net extend the boundaries that help in protecting the edges and structures of an image. Contextual optimization impacts the final quality of the dehazed image by enhancing smoothness and coherence. We compare ERCO-Net with conventional approaches such as dark channel prior (DCP), All-in-one dehazing network (AoD), and Feature fusion attention network (FFA-Net). The comparative evaluation highlights the effectiveness of the proposed fusion method, providing significant improvement in image clarity, contrast, and colors. The combination of edge restriction and contextual optimization not only enhances the quality of dehazing but also decreases computational complexity, presenting a promising avenue for advancing image restoration techniques. The source code is available at https://github.com/FatimaAyub12/Image-Dehazing-.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2024.01510114</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2024-01, Vol.15 (10) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_3131836894 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computer science Computer vision Deep learning Efficiency Image contrast Image enhancement Image quality Image restoration Literature reviews Neural networks Optimization Optimization techniques Smoothness Source code |
title | ERCO-Net: Enhancing Image Dehazing for Optimized Detail Retention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ERCO-Net:%20Enhancing%20Image%20Dehazing%20for%20Optimized%20Detail%20Retention&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Sabir,%20Muhammad%20Ayub&rft.date=2024-01-01&rft.volume=15&rft.issue=10&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2024.01510114&rft_dat=%3Cproquest_cross%3E3131836894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131836894&rft_id=info:pmid/&rfr_iscdi=true |