Model-averaging-based semiparametric modeling for conditional quantile prediction

In real data analysis, the underlying model is frequently unknown. Hence, the modeling strategy plays a key role in the success of data analysis. Inspired by the idea of model averaging, we propose a novel semiparametric modeling strategy for the conditional quantile prediction, without assuming tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2024-12, Vol.67 (12), p.2843-2872
Hauptverfasser: Guo, Chaohui, Zhang, Wenyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2872
container_issue 12
container_start_page 2843
container_title Science China. Mathematics
container_volume 67
creator Guo, Chaohui
Zhang, Wenyang
description In real data analysis, the underlying model is frequently unknown. Hence, the modeling strategy plays a key role in the success of data analysis. Inspired by the idea of model averaging, we propose a novel semiparametric modeling strategy for the conditional quantile prediction, without assuming that the underlying model is any specific parametric or semiparametric model. Due to the optimality of the weights selected by leave-one-out cross-validation, the proposed modeling strategy provides a more precise prediction than those based on some commonly used semiparametric models such as the varying coefficient and additive models. Asymptotic properties are established in the proposed modeling strategy along with its estimation procedure. We conducted extensive simulations to compare our method with alternatives across various scenarios. The results show that our method provides more accurate predictions. Finally, we applied our approach to the Boston housing data, yielding more precise quantile predictions of house prices compared with commonly used methods, and thus offering a clearer picture of the Boston housing market.
doi_str_mv 10.1007/s11425-022-2205-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131833118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131833118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-69b40fa3f4dbda80387ea147634bfdcb0d0a72f699b5d3018b0317a2ef46f7253</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLgsu4HeBvwHE0nmUnmKIsvWBFBzyGZJEuWeW0yK_j3ZhjBk32obrqriqYQugZyC4SIuwTAaYkJpZhSUmI4QyuQVY0z0PM8V4JjQSW7RJuUDiQXqwkXbIXeXwfrWqy_XNT70O-x0cnZIrkujDrqzk0xNEU3k_K18EMsmqG3YQpDr9vieNL9FFpXjNHZ0MzbK3ThdZvc5rev0efjw8f2Ge_enl629zvcQC0nXNWGE6-Z59ZYLQmTwmngomLceNsYYokW1Fd1bUrLCEhDGAhNneeVF7Rka3Sz-I5xOJ5cmtRhOMX8VFIMGEjGIMMawcJq4pBSdF6NMXQ6fisgag5PLeGpHJ6aw1OQNXTRpMzt9y7-Of8v-gGBqXJD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131833118</pqid></control><display><type>article</type><title>Model-averaging-based semiparametric modeling for conditional quantile prediction</title><source>SpringerLink_现刊</source><source>Alma/SFX Local Collection</source><creator>Guo, Chaohui ; Zhang, Wenyang</creator><creatorcontrib>Guo, Chaohui ; Zhang, Wenyang</creatorcontrib><description>In real data analysis, the underlying model is frequently unknown. Hence, the modeling strategy plays a key role in the success of data analysis. Inspired by the idea of model averaging, we propose a novel semiparametric modeling strategy for the conditional quantile prediction, without assuming that the underlying model is any specific parametric or semiparametric model. Due to the optimality of the weights selected by leave-one-out cross-validation, the proposed modeling strategy provides a more precise prediction than those based on some commonly used semiparametric models such as the varying coefficient and additive models. Asymptotic properties are established in the proposed modeling strategy along with its estimation procedure. We conducted extensive simulations to compare our method with alternatives across various scenarios. The results show that our method provides more accurate predictions. Finally, we applied our approach to the Boston housing data, yielding more precise quantile predictions of house prices compared with commonly used methods, and thus offering a clearer picture of the Boston housing market.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-022-2205-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Asymptotic methods ; Asymptotic properties ; Data analysis ; Mathematics ; Mathematics and Statistics ; Modelling ; Quantiles</subject><ispartof>Science China. Mathematics, 2024-12, Vol.67 (12), p.2843-2872</ispartof><rights>Science China Press 2024</rights><rights>Science China Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-69b40fa3f4dbda80387ea147634bfdcb0d0a72f699b5d3018b0317a2ef46f7253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-022-2205-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-022-2205-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Guo, Chaohui</creatorcontrib><creatorcontrib>Zhang, Wenyang</creatorcontrib><title>Model-averaging-based semiparametric modeling for conditional quantile prediction</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In real data analysis, the underlying model is frequently unknown. Hence, the modeling strategy plays a key role in the success of data analysis. Inspired by the idea of model averaging, we propose a novel semiparametric modeling strategy for the conditional quantile prediction, without assuming that the underlying model is any specific parametric or semiparametric model. Due to the optimality of the weights selected by leave-one-out cross-validation, the proposed modeling strategy provides a more precise prediction than those based on some commonly used semiparametric models such as the varying coefficient and additive models. Asymptotic properties are established in the proposed modeling strategy along with its estimation procedure. We conducted extensive simulations to compare our method with alternatives across various scenarios. The results show that our method provides more accurate predictions. Finally, we applied our approach to the Boston housing data, yielding more precise quantile predictions of house prices compared with commonly used methods, and thus offering a clearer picture of the Boston housing market.</description><subject>Applications of Mathematics</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Data analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modelling</subject><subject>Quantiles</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKBDEQDKLgsu4HeBvwHE0nmUnmKIsvWBFBzyGZJEuWeW0yK_j3ZhjBk32obrqriqYQugZyC4SIuwTAaYkJpZhSUmI4QyuQVY0z0PM8V4JjQSW7RJuUDiQXqwkXbIXeXwfrWqy_XNT70O-x0cnZIrkujDrqzk0xNEU3k_K18EMsmqG3YQpDr9vieNL9FFpXjNHZ0MzbK3ThdZvc5rev0efjw8f2Ge_enl629zvcQC0nXNWGE6-Z59ZYLQmTwmngomLceNsYYokW1Fd1bUrLCEhDGAhNneeVF7Rka3Sz-I5xOJ5cmtRhOMX8VFIMGEjGIMMawcJq4pBSdF6NMXQ6fisgag5PLeGpHJ6aw1OQNXTRpMzt9y7-Of8v-gGBqXJD</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Guo, Chaohui</creator><creator>Zhang, Wenyang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Model-averaging-based semiparametric modeling for conditional quantile prediction</title><author>Guo, Chaohui ; Zhang, Wenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-69b40fa3f4dbda80387ea147634bfdcb0d0a72f699b5d3018b0317a2ef46f7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Data analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modelling</topic><topic>Quantiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chaohui</creatorcontrib><creatorcontrib>Zhang, Wenyang</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chaohui</au><au>Zhang, Wenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-averaging-based semiparametric modeling for conditional quantile prediction</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>67</volume><issue>12</issue><spage>2843</spage><epage>2872</epage><pages>2843-2872</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In real data analysis, the underlying model is frequently unknown. Hence, the modeling strategy plays a key role in the success of data analysis. Inspired by the idea of model averaging, we propose a novel semiparametric modeling strategy for the conditional quantile prediction, without assuming that the underlying model is any specific parametric or semiparametric model. Due to the optimality of the weights selected by leave-one-out cross-validation, the proposed modeling strategy provides a more precise prediction than those based on some commonly used semiparametric models such as the varying coefficient and additive models. Asymptotic properties are established in the proposed modeling strategy along with its estimation procedure. We conducted extensive simulations to compare our method with alternatives across various scenarios. The results show that our method provides more accurate predictions. Finally, we applied our approach to the Boston housing data, yielding more precise quantile predictions of house prices compared with commonly used methods, and thus offering a clearer picture of the Boston housing market.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-022-2205-1</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2024-12, Vol.67 (12), p.2843-2872
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_3131833118
source SpringerLink_现刊; Alma/SFX Local Collection
subjects Applications of Mathematics
Asymptotic methods
Asymptotic properties
Data analysis
Mathematics
Mathematics and Statistics
Modelling
Quantiles
title Model-averaging-based semiparametric modeling for conditional quantile prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-averaging-based%20semiparametric%20modeling%20for%20conditional%20quantile%20prediction&rft.jtitle=Science%20China.%20Mathematics&rft.au=Guo,%20Chaohui&rft.date=2024-12-01&rft.volume=67&rft.issue=12&rft.spage=2843&rft.epage=2872&rft.pages=2843-2872&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-022-2205-1&rft_dat=%3Cproquest_cross%3E3131833118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131833118&rft_id=info:pmid/&rfr_iscdi=true