Electrode polarization and ionic conduction relaxation in n-Hexanol and DMF Mixtures at 303.15 K: insights into molecular dynamics

Using a precision LCR meter, the real and imaginary components of the complex relative dielectric function (ε*(f) = ɛ'(f)—jɛ”(f)) of the binary mixtures of n-Hexanol and N, N-Dimethylformamide were measured in the frequency range of 20 Hz to 2 MHz at a constant temperature of 303.15 K. Complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2024-11, Vol.30 (11), p.7607-7619
Hauptverfasser: Chaudhary, N. A., Shah, K. N., Vaja, C. R., Rana, V. A., Kumar, Deepak, Prajapati, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7619
container_issue 11
container_start_page 7607
container_title Ionics
container_volume 30
creator Chaudhary, N. A.
Shah, K. N.
Vaja, C. R.
Rana, V. A.
Kumar, Deepak
Prajapati, A. N.
description Using a precision LCR meter, the real and imaginary components of the complex relative dielectric function (ε*(f) = ɛ'(f)—jɛ”(f)) of the binary mixtures of n-Hexanol and N, N-Dimethylformamide were measured in the frequency range of 20 Hz to 2 MHz at a constant temperature of 303.15 K. Complex relative dielectric function ε*(f), was then converted into various formalisms namely: complex electric modulus M*(f), complex electrical conductivity σ*(f), and complex impedance Z*(f) in order to explore the electric and dielectric characteristics of the liquid samples. Loss tangent (tan δ = ɛ"/ɛ') was determined from the complex relative dielectric function ε*(f). Further, ε*(f) was fitted to the Cole–Cole relaxation model to determine different dielectric and electrical parameters. Relaxation time associated with various relaxation processes observed in the considered frequency range of applied ac electric field are determined. Measured dielectric data are used to gain information about the effect of electrode polarization relaxation and ionic conduction relaxation process in the given mixture. Various parameters, including Debye Length (λ D ), Ion Mobility (μ), Mobile Ion Concentration (P 0 ), and Ion Diffusivity (D) were computed for each binary mixture across constant temperature.
doi_str_mv 10.1007/s11581-024-05779-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131832986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131832986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9058309f7574ebe750efe89d82f81c19930c2d1fb9f47b26b1ac582cea7f189a3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEuXnAqwssTaM7SS22SH-igCxgbXlOk4JSu1iJ1LLlotwFk6GaZDYsZrRzPfekx5CRxROKIA4TZSWkhJgBYFSCEXUFppQWTECooJtNAFVCCKgELtoL6VXgKqiTEzQx1XnbB9D7fAydCa276Zvg8fG1zjP1mIbfD3YzTG6zqzGf-uxJ1O3Mj50G_jy4Ro_tKt-iC5h02MO_ISWX593Z5lN7fylT3npA16EnDjkKFyvvVm0Nh2gncZ0yR3-zn30fH31dDEl9483txfn98QygJ4oKCUH1YhSFG7mRAmucVLVkjWSWqoUB8tq2sxUU4gZq2bU2FIy64xoqFSG76Pj0XcZw9vgUq9fwxB9jtSccio5U7LKFBspG0NK0TV6GduFiWtNQf-UrceydS5bb8rWKov4KEoZ9nMX_6z_UX0DcDaDnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131832986</pqid></control><display><type>article</type><title>Electrode polarization and ionic conduction relaxation in n-Hexanol and DMF Mixtures at 303.15 K: insights into molecular dynamics</title><source>SpringerLink Journals</source><creator>Chaudhary, N. A. ; Shah, K. N. ; Vaja, C. R. ; Rana, V. A. ; Kumar, Deepak ; Prajapati, A. N.</creator><creatorcontrib>Chaudhary, N. A. ; Shah, K. N. ; Vaja, C. R. ; Rana, V. A. ; Kumar, Deepak ; Prajapati, A. N.</creatorcontrib><description>Using a precision LCR meter, the real and imaginary components of the complex relative dielectric function (ε*(f) = ɛ'(f)—jɛ”(f)) of the binary mixtures of n-Hexanol and N, N-Dimethylformamide were measured in the frequency range of 20 Hz to 2 MHz at a constant temperature of 303.15 K. Complex relative dielectric function ε*(f), was then converted into various formalisms namely: complex electric modulus M*(f), complex electrical conductivity σ*(f), and complex impedance Z*(f) in order to explore the electric and dielectric characteristics of the liquid samples. Loss tangent (tan δ = ɛ"/ɛ') was determined from the complex relative dielectric function ε*(f). Further, ε*(f) was fitted to the Cole–Cole relaxation model to determine different dielectric and electrical parameters. Relaxation time associated with various relaxation processes observed in the considered frequency range of applied ac electric field are determined. Measured dielectric data are used to gain information about the effect of electrode polarization relaxation and ionic conduction relaxation process in the given mixture. Various parameters, including Debye Length (λ D ), Ion Mobility (μ), Mobile Ion Concentration (P 0 ), and Ion Diffusivity (D) were computed for each binary mixture across constant temperature.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-024-05779-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binary mixtures ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Debye length ; Dielectric properties ; Dimethylformamide ; Electric fields ; Electrical resistivity ; Electrochemistry ; Electrode polarization ; Electrodes ; Energy Storage ; Frequency ranges ; Ion concentration ; Ionic mobility ; Molecular dynamics ; Optical and Electronic Materials ; Parameters ; Relaxation time ; Renewable and Green Energy</subject><ispartof>Ionics, 2024-11, Vol.30 (11), p.7607-7619</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9058309f7574ebe750efe89d82f81c19930c2d1fb9f47b26b1ac582cea7f189a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-024-05779-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-024-05779-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chaudhary, N. A.</creatorcontrib><creatorcontrib>Shah, K. N.</creatorcontrib><creatorcontrib>Vaja, C. R.</creatorcontrib><creatorcontrib>Rana, V. A.</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Prajapati, A. N.</creatorcontrib><title>Electrode polarization and ionic conduction relaxation in n-Hexanol and DMF Mixtures at 303.15 K: insights into molecular dynamics</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Using a precision LCR meter, the real and imaginary components of the complex relative dielectric function (ε*(f) = ɛ'(f)—jɛ”(f)) of the binary mixtures of n-Hexanol and N, N-Dimethylformamide were measured in the frequency range of 20 Hz to 2 MHz at a constant temperature of 303.15 K. Complex relative dielectric function ε*(f), was then converted into various formalisms namely: complex electric modulus M*(f), complex electrical conductivity σ*(f), and complex impedance Z*(f) in order to explore the electric and dielectric characteristics of the liquid samples. Loss tangent (tan δ = ɛ"/ɛ') was determined from the complex relative dielectric function ε*(f). Further, ε*(f) was fitted to the Cole–Cole relaxation model to determine different dielectric and electrical parameters. Relaxation time associated with various relaxation processes observed in the considered frequency range of applied ac electric field are determined. Measured dielectric data are used to gain information about the effect of electrode polarization relaxation and ionic conduction relaxation process in the given mixture. Various parameters, including Debye Length (λ D ), Ion Mobility (μ), Mobile Ion Concentration (P 0 ), and Ion Diffusivity (D) were computed for each binary mixture across constant temperature.</description><subject>Binary mixtures</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Debye length</subject><subject>Dielectric properties</subject><subject>Dimethylformamide</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Frequency ranges</subject><subject>Ion concentration</subject><subject>Ionic mobility</subject><subject>Molecular dynamics</subject><subject>Optical and Electronic Materials</subject><subject>Parameters</subject><subject>Relaxation time</subject><subject>Renewable and Green Energy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEuXnAqwssTaM7SS22SH-igCxgbXlOk4JSu1iJ1LLlotwFk6GaZDYsZrRzPfekx5CRxROKIA4TZSWkhJgBYFSCEXUFppQWTECooJtNAFVCCKgELtoL6VXgKqiTEzQx1XnbB9D7fAydCa276Zvg8fG1zjP1mIbfD3YzTG6zqzGf-uxJ1O3Mj50G_jy4Ro_tKt-iC5h02MO_ISWX593Z5lN7fylT3npA16EnDjkKFyvvVm0Nh2gncZ0yR3-zn30fH31dDEl9483txfn98QygJ4oKCUH1YhSFG7mRAmucVLVkjWSWqoUB8tq2sxUU4gZq2bU2FIy64xoqFSG76Pj0XcZw9vgUq9fwxB9jtSccio5U7LKFBspG0NK0TV6GduFiWtNQf-UrceydS5bb8rWKov4KEoZ9nMX_6z_UX0DcDaDnw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chaudhary, N. A.</creator><creator>Shah, K. N.</creator><creator>Vaja, C. R.</creator><creator>Rana, V. A.</creator><creator>Kumar, Deepak</creator><creator>Prajapati, A. N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Electrode polarization and ionic conduction relaxation in n-Hexanol and DMF Mixtures at 303.15 K: insights into molecular dynamics</title><author>Chaudhary, N. A. ; Shah, K. N. ; Vaja, C. R. ; Rana, V. A. ; Kumar, Deepak ; Prajapati, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9058309f7574ebe750efe89d82f81c19930c2d1fb9f47b26b1ac582cea7f189a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binary mixtures</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Debye length</topic><topic>Dielectric properties</topic><topic>Dimethylformamide</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Frequency ranges</topic><topic>Ion concentration</topic><topic>Ionic mobility</topic><topic>Molecular dynamics</topic><topic>Optical and Electronic Materials</topic><topic>Parameters</topic><topic>Relaxation time</topic><topic>Renewable and Green Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhary, N. A.</creatorcontrib><creatorcontrib>Shah, K. N.</creatorcontrib><creatorcontrib>Vaja, C. R.</creatorcontrib><creatorcontrib>Rana, V. A.</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Prajapati, A. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhary, N. A.</au><au>Shah, K. N.</au><au>Vaja, C. R.</au><au>Rana, V. A.</au><au>Kumar, Deepak</au><au>Prajapati, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrode polarization and ionic conduction relaxation in n-Hexanol and DMF Mixtures at 303.15 K: insights into molecular dynamics</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>30</volume><issue>11</issue><spage>7607</spage><epage>7619</epage><pages>7607-7619</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Using a precision LCR meter, the real and imaginary components of the complex relative dielectric function (ε*(f) = ɛ'(f)—jɛ”(f)) of the binary mixtures of n-Hexanol and N, N-Dimethylformamide were measured in the frequency range of 20 Hz to 2 MHz at a constant temperature of 303.15 K. Complex relative dielectric function ε*(f), was then converted into various formalisms namely: complex electric modulus M*(f), complex electrical conductivity σ*(f), and complex impedance Z*(f) in order to explore the electric and dielectric characteristics of the liquid samples. Loss tangent (tan δ = ɛ"/ɛ') was determined from the complex relative dielectric function ε*(f). Further, ε*(f) was fitted to the Cole–Cole relaxation model to determine different dielectric and electrical parameters. Relaxation time associated with various relaxation processes observed in the considered frequency range of applied ac electric field are determined. Measured dielectric data are used to gain information about the effect of electrode polarization relaxation and ionic conduction relaxation process in the given mixture. Various parameters, including Debye Length (λ D ), Ion Mobility (μ), Mobile Ion Concentration (P 0 ), and Ion Diffusivity (D) were computed for each binary mixture across constant temperature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-024-05779-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2024-11, Vol.30 (11), p.7607-7619
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_3131832986
source SpringerLink Journals
subjects Binary mixtures
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Debye length
Dielectric properties
Dimethylformamide
Electric fields
Electrical resistivity
Electrochemistry
Electrode polarization
Electrodes
Energy Storage
Frequency ranges
Ion concentration
Ionic mobility
Molecular dynamics
Optical and Electronic Materials
Parameters
Relaxation time
Renewable and Green Energy
title Electrode polarization and ionic conduction relaxation in n-Hexanol and DMF Mixtures at 303.15 K: insights into molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrode%20polarization%20and%20ionic%20conduction%20relaxation%20in%20n-Hexanol%20and%20DMF%20Mixtures%20at%20303.15%C2%A0K:%20insights%20into%20molecular%20dynamics&rft.jtitle=Ionics&rft.au=Chaudhary,%20N.%20A.&rft.date=2024-11-01&rft.volume=30&rft.issue=11&rft.spage=7607&rft.epage=7619&rft.pages=7607-7619&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-024-05779-9&rft_dat=%3Cproquest_cross%3E3131832986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131832986&rft_id=info:pmid/&rfr_iscdi=true