On the mass action law and the power law response in tin dioxide gas sensors
The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases ( R ~ p γ ). The exponent γ can be derived resorting to the mass action law and its value depends on chemical reactions that take place at...
Gespeichert in:
Veröffentlicht in: | Journal of electroceramics 2024, Vol.52 (2), p.135-143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 2 |
container_start_page | 135 |
container_title | Journal of electroceramics |
container_volume | 52 |
creator | Mirabella, Daniel A. Desimone, Paula M. Aldao, Celso M. |
description | The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases (
R
~
p
γ
). The exponent
γ
can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent
γ
. Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of
γ
values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur. |
doi_str_mv | 10.1007/s10832-024-00351-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131832782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131832782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4c45c5cf7217f2f4f648802616ce8d23d8b361f9a6ccb69aa23cca1b2c7b3d813</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczTJZLPZoxT_QaEXPYdsNlu3tJs1s6X67Y1dwZuHYYaZ997Aj5BrwW8F5-UdCm5AMi4V4xwKweCEzERRAjNaw2mewRQMlKrOyQXihnNeGSVmZLnq6fge6M4hUufHLvZ06w7U9c1xP8RDSMdNCjjEHgPtsiNX08XPrgl07ZBi6DEmvCRnrdtiuPrtc_L2-PC6eGbL1dPL4n7JvCz5yJRXhS98W0pRtrJVrVbGcKmF9sE0EhpTgxZt5bT3ta6ck-C9E7X0ZZ2PAubkZsodUvzYBxztJu5Tn19aECAyidLIrJKTyqeImEJrh9TtXPqygtsfanaiZjM1e6RmIZtgMmEW9-uQ_qL_cX0DTy9u_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131832782</pqid></control><display><type>article</type><title>On the mass action law and the power law response in tin dioxide gas sensors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mirabella, Daniel A. ; Desimone, Paula M. ; Aldao, Celso M.</creator><creatorcontrib>Mirabella, Daniel A. ; Desimone, Paula M. ; Aldao, Celso M.</creatorcontrib><description>The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases (
R
~
p
γ
). The exponent
γ
can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent
γ
. Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of
γ
values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur.</description><identifier>ISSN: 1385-3449</identifier><identifier>EISSN: 1573-8663</identifier><identifier>DOI: 10.1007/s10832-024-00351-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry and Materials Science ; Composites ; Crystallography and Scattering Methods ; Electrochemistry ; Gas sensors ; Glass ; Materials Science ; Metal oxide semiconductors ; Natural Materials ; Optical and Electronic Materials ; Power law ; Tin dioxide</subject><ispartof>Journal of electroceramics, 2024, Vol.52 (2), p.135-143</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4c45c5cf7217f2f4f648802616ce8d23d8b361f9a6ccb69aa23cca1b2c7b3d813</cites><orcidid>0000-0001-9827-9086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10832-024-00351-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10832-024-00351-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mirabella, Daniel A.</creatorcontrib><creatorcontrib>Desimone, Paula M.</creatorcontrib><creatorcontrib>Aldao, Celso M.</creatorcontrib><title>On the mass action law and the power law response in tin dioxide gas sensors</title><title>Journal of electroceramics</title><addtitle>J Electroceram</addtitle><description>The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases (
R
~
p
γ
). The exponent
γ
can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent
γ
. Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of
γ
values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemistry</subject><subject>Gas sensors</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Power law</subject><subject>Tin dioxide</subject><issn>1385-3449</issn><issn>1573-8663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczTJZLPZoxT_QaEXPYdsNlu3tJs1s6X67Y1dwZuHYYaZ997Aj5BrwW8F5-UdCm5AMi4V4xwKweCEzERRAjNaw2mewRQMlKrOyQXihnNeGSVmZLnq6fge6M4hUufHLvZ06w7U9c1xP8RDSMdNCjjEHgPtsiNX08XPrgl07ZBi6DEmvCRnrdtiuPrtc_L2-PC6eGbL1dPL4n7JvCz5yJRXhS98W0pRtrJVrVbGcKmF9sE0EhpTgxZt5bT3ta6ck-C9E7X0ZZ2PAubkZsodUvzYBxztJu5Tn19aECAyidLIrJKTyqeImEJrh9TtXPqygtsfanaiZjM1e6RmIZtgMmEW9-uQ_qL_cX0DTy9u_w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mirabella, Daniel A.</creator><creator>Desimone, Paula M.</creator><creator>Aldao, Celso M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9827-9086</orcidid></search><sort><creationdate>2024</creationdate><title>On the mass action law and the power law response in tin dioxide gas sensors</title><author>Mirabella, Daniel A. ; Desimone, Paula M. ; Aldao, Celso M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4c45c5cf7217f2f4f648802616ce8d23d8b361f9a6ccb69aa23cca1b2c7b3d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemistry</topic><topic>Gas sensors</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Power law</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirabella, Daniel A.</creatorcontrib><creatorcontrib>Desimone, Paula M.</creatorcontrib><creatorcontrib>Aldao, Celso M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electroceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirabella, Daniel A.</au><au>Desimone, Paula M.</au><au>Aldao, Celso M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mass action law and the power law response in tin dioxide gas sensors</atitle><jtitle>Journal of electroceramics</jtitle><stitle>J Electroceram</stitle><date>2024</date><risdate>2024</risdate><volume>52</volume><issue>2</issue><spage>135</spage><epage>143</epage><pages>135-143</pages><issn>1385-3449</issn><eissn>1573-8663</eissn><abstract>The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases (
R
~
p
γ
). The exponent
γ
can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent
γ
. Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of
γ
values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10832-024-00351-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9827-9086</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-3449 |
ispartof | Journal of electroceramics, 2024, Vol.52 (2), p.135-143 |
issn | 1385-3449 1573-8663 |
language | eng |
recordid | cdi_proquest_journals_3131832782 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ceramics Characterization and Evaluation of Materials Chemical reactions Chemistry and Materials Science Composites Crystallography and Scattering Methods Electrochemistry Gas sensors Glass Materials Science Metal oxide semiconductors Natural Materials Optical and Electronic Materials Power law Tin dioxide |
title | On the mass action law and the power law response in tin dioxide gas sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mass%20action%20law%20and%20the%20power%20law%20response%20in%20tin%20dioxide%20gas%20sensors&rft.jtitle=Journal%20of%20electroceramics&rft.au=Mirabella,%20Daniel%20A.&rft.date=2024&rft.volume=52&rft.issue=2&rft.spage=135&rft.epage=143&rft.pages=135-143&rft.issn=1385-3449&rft.eissn=1573-8663&rft_id=info:doi/10.1007/s10832-024-00351-3&rft_dat=%3Cproquest_cross%3E3131832782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131832782&rft_id=info:pmid/&rfr_iscdi=true |