On the mass action law and the power law response in tin dioxide gas sensors

The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases ( R  ~  p γ ). The exponent γ can be derived resorting to the mass action law and its value depends on chemical reactions that take place at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroceramics 2024, Vol.52 (2), p.135-143
Hauptverfasser: Mirabella, Daniel A., Desimone, Paula M., Aldao, Celso M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 2
container_start_page 135
container_title Journal of electroceramics
container_volume 52
creator Mirabella, Daniel A.
Desimone, Paula M.
Aldao, Celso M.
description The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases ( R  ~  p γ ). The exponent γ can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent γ . Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of γ values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur.
doi_str_mv 10.1007/s10832-024-00351-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131832782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131832782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4c45c5cf7217f2f4f648802616ce8d23d8b361f9a6ccb69aa23cca1b2c7b3d813</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczTJZLPZoxT_QaEXPYdsNlu3tJs1s6X67Y1dwZuHYYaZ997Aj5BrwW8F5-UdCm5AMi4V4xwKweCEzERRAjNaw2mewRQMlKrOyQXihnNeGSVmZLnq6fge6M4hUufHLvZ06w7U9c1xP8RDSMdNCjjEHgPtsiNX08XPrgl07ZBi6DEmvCRnrdtiuPrtc_L2-PC6eGbL1dPL4n7JvCz5yJRXhS98W0pRtrJVrVbGcKmF9sE0EhpTgxZt5bT3ta6ck-C9E7X0ZZ2PAubkZsodUvzYBxztJu5Tn19aECAyidLIrJKTyqeImEJrh9TtXPqygtsfanaiZjM1e6RmIZtgMmEW9-uQ_qL_cX0DTy9u_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131832782</pqid></control><display><type>article</type><title>On the mass action law and the power law response in tin dioxide gas sensors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mirabella, Daniel A. ; Desimone, Paula M. ; Aldao, Celso M.</creator><creatorcontrib>Mirabella, Daniel A. ; Desimone, Paula M. ; Aldao, Celso M.</creatorcontrib><description>The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases ( R  ~  p γ ). The exponent γ can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent γ . Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of γ values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur.</description><identifier>ISSN: 1385-3449</identifier><identifier>EISSN: 1573-8663</identifier><identifier>DOI: 10.1007/s10832-024-00351-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry and Materials Science ; Composites ; Crystallography and Scattering Methods ; Electrochemistry ; Gas sensors ; Glass ; Materials Science ; Metal oxide semiconductors ; Natural Materials ; Optical and Electronic Materials ; Power law ; Tin dioxide</subject><ispartof>Journal of electroceramics, 2024, Vol.52 (2), p.135-143</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4c45c5cf7217f2f4f648802616ce8d23d8b361f9a6ccb69aa23cca1b2c7b3d813</cites><orcidid>0000-0001-9827-9086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10832-024-00351-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10832-024-00351-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mirabella, Daniel A.</creatorcontrib><creatorcontrib>Desimone, Paula M.</creatorcontrib><creatorcontrib>Aldao, Celso M.</creatorcontrib><title>On the mass action law and the power law response in tin dioxide gas sensors</title><title>Journal of electroceramics</title><addtitle>J Electroceram</addtitle><description>The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases ( R  ~  p γ ). The exponent γ can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent γ . Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of γ values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemistry</subject><subject>Gas sensors</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Power law</subject><subject>Tin dioxide</subject><issn>1385-3449</issn><issn>1573-8663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczTJZLPZoxT_QaEXPYdsNlu3tJs1s6X67Y1dwZuHYYaZ997Aj5BrwW8F5-UdCm5AMi4V4xwKweCEzERRAjNaw2mewRQMlKrOyQXihnNeGSVmZLnq6fge6M4hUufHLvZ06w7U9c1xP8RDSMdNCjjEHgPtsiNX08XPrgl07ZBi6DEmvCRnrdtiuPrtc_L2-PC6eGbL1dPL4n7JvCz5yJRXhS98W0pRtrJVrVbGcKmF9sE0EhpTgxZt5bT3ta6ck-C9E7X0ZZ2PAubkZsodUvzYBxztJu5Tn19aECAyidLIrJKTyqeImEJrh9TtXPqygtsfanaiZjM1e6RmIZtgMmEW9-uQ_qL_cX0DTy9u_w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mirabella, Daniel A.</creator><creator>Desimone, Paula M.</creator><creator>Aldao, Celso M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9827-9086</orcidid></search><sort><creationdate>2024</creationdate><title>On the mass action law and the power law response in tin dioxide gas sensors</title><author>Mirabella, Daniel A. ; Desimone, Paula M. ; Aldao, Celso M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4c45c5cf7217f2f4f648802616ce8d23d8b361f9a6ccb69aa23cca1b2c7b3d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemistry</topic><topic>Gas sensors</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Power law</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirabella, Daniel A.</creatorcontrib><creatorcontrib>Desimone, Paula M.</creatorcontrib><creatorcontrib>Aldao, Celso M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electroceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirabella, Daniel A.</au><au>Desimone, Paula M.</au><au>Aldao, Celso M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mass action law and the power law response in tin dioxide gas sensors</atitle><jtitle>Journal of electroceramics</jtitle><stitle>J Electroceram</stitle><date>2024</date><risdate>2024</risdate><volume>52</volume><issue>2</issue><spage>135</spage><epage>143</epage><pages>135-143</pages><issn>1385-3449</issn><eissn>1573-8663</eissn><abstract>The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases ( R  ~  p γ ). The exponent γ can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent γ . Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of γ values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10832-024-00351-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9827-9086</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-3449
ispartof Journal of electroceramics, 2024, Vol.52 (2), p.135-143
issn 1385-3449
1573-8663
language eng
recordid cdi_proquest_journals_3131832782
source SpringerLink Journals - AutoHoldings
subjects Ceramics
Characterization and Evaluation of Materials
Chemical reactions
Chemistry and Materials Science
Composites
Crystallography and Scattering Methods
Electrochemistry
Gas sensors
Glass
Materials Science
Metal oxide semiconductors
Natural Materials
Optical and Electronic Materials
Power law
Tin dioxide
title On the mass action law and the power law response in tin dioxide gas sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mass%20action%20law%20and%20the%20power%20law%20response%20in%20tin%20dioxide%20gas%20sensors&rft.jtitle=Journal%20of%20electroceramics&rft.au=Mirabella,%20Daniel%20A.&rft.date=2024&rft.volume=52&rft.issue=2&rft.spage=135&rft.epage=143&rft.pages=135-143&rft.issn=1385-3449&rft.eissn=1573-8663&rft_id=info:doi/10.1007/s10832-024-00351-3&rft_dat=%3Cproquest_cross%3E3131832782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131832782&rft_id=info:pmid/&rfr_iscdi=true