Optimal HAR inference
This paper considers the problem of deriving heteroskedasticity and autocorrelation robust (HAR) inference about a scalar parameter of interest. The main assumption is that there is a known upper bound on the degree of persistence in data. I derive finite‐sample optimal tests in the Gaussian locatio...
Gespeichert in:
Veröffentlicht in: | Quantitative economics 2024-11, Vol.15 (4), p.1107-1149 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1149 |
---|---|
container_issue | 4 |
container_start_page | 1107 |
container_title | Quantitative economics |
container_volume | 15 |
creator | Dou, Liyu |
description | This paper considers the problem of deriving heteroskedasticity and autocorrelation robust (HAR) inference about a scalar parameter of interest. The main assumption is that there is a known upper bound on the degree of persistence in data. I derive finite‐sample optimal tests in the Gaussian location model and show that the robustness‐efficiency tradeoffs embedded in the optimal tests are essentially determined by the maximal persistence. I find that with an appropriate adjustment to the critical value, it is nearly optimal to use the so‐called equal‐weighted cosine (EWC) test, where the long‐run variance is estimated by projections onto q type II cosines. The practical implications are an explicit link between the choice of q and assumptions on the underlying persistence, as well as a corresponding adjustment to the usual Student‐t critical value. I illustrate the results in two empirical examples. |
doi_str_mv | 10.3982/QE1762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131338579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131338579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2153-c30c047af627a70035c50a2b35c9b4695b5bace679a1b2234941722887dd95a53</originalsourceid><addsrcrecordid>eNp1j0FLAzEQhYMoWGq9eS8I3rYmM5ud5FhKtUKxVOw5ZNMsbFl316RF-u-NrHhz5vDm8PHmPcZuBZ-hVvC4XQoq4IKNBEmdEaK4_LsBr9kkxgNPg0oVJEbsbtMf6w_bTFfzt2ndVj741vkbdlXZJvrJr47Z7mn5vlhl683zy2K-zhwIiZlD7nhOtiqALCVT6SS3UCbVZV5oWcrSOl-QtqIEwFznggCUov1eSytxzO4H3z50nycfj-bQnUKbXhoUaVFJ0ol6GCgXuhiDr0wfUuZwNoKbn9ZmaJ3A2QB-1Y0__0OZ7W7-CilsjvgNL1FSwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131338579</pqid></control><display><type>article</type><title>Optimal HAR inference</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EBSCOhost Business Source Complete</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dou, Liyu</creator><creatorcontrib>Dou, Liyu</creatorcontrib><description>This paper considers the problem of deriving heteroskedasticity and autocorrelation robust (HAR) inference about a scalar parameter of interest. The main assumption is that there is a known upper bound on the degree of persistence in data. I derive finite‐sample optimal tests in the Gaussian location model and show that the robustness‐efficiency tradeoffs embedded in the optimal tests are essentially determined by the maximal persistence. I find that with an appropriate adjustment to the critical value, it is nearly optimal to use the so‐called equal‐weighted cosine (EWC) test, where the long‐run variance is estimated by projections onto q type II cosines. The practical implications are an explicit link between the choice of q and assumptions on the underlying persistence, as well as a corresponding adjustment to the usual Student‐t critical value. I illustrate the results in two empirical examples.</description><identifier>ISSN: 1759-7323</identifier><identifier>EISSN: 1759-7331</identifier><identifier>DOI: 10.3982/QE1762</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Adjustment ; C12 ; C18 ; C22 ; Efficiency ; Heteroskedasticity and autocorrelation robust inference ; Hypotheses ; Hypothesis testing ; long‐run variance ; Power ; Projections ; Robustness ; Tests</subject><ispartof>Quantitative economics, 2024-11, Vol.15 (4), p.1107-1149</ispartof><rights>Copyright © 2024 The Author.</rights><rights>Copyright John Wiley & Sons, Inc. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2153-c30c047af627a70035c50a2b35c9b4695b5bace679a1b2234941722887dd95a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.3982%2FQE1762$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.3982%2FQE1762$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,1433,11562,27924,27925,45574,45575,46052,46409,46476,46833</link.rule.ids></links><search><creatorcontrib>Dou, Liyu</creatorcontrib><title>Optimal HAR inference</title><title>Quantitative economics</title><description>This paper considers the problem of deriving heteroskedasticity and autocorrelation robust (HAR) inference about a scalar parameter of interest. The main assumption is that there is a known upper bound on the degree of persistence in data. I derive finite‐sample optimal tests in the Gaussian location model and show that the robustness‐efficiency tradeoffs embedded in the optimal tests are essentially determined by the maximal persistence. I find that with an appropriate adjustment to the critical value, it is nearly optimal to use the so‐called equal‐weighted cosine (EWC) test, where the long‐run variance is estimated by projections onto q type II cosines. The practical implications are an explicit link between the choice of q and assumptions on the underlying persistence, as well as a corresponding adjustment to the usual Student‐t critical value. I illustrate the results in two empirical examples.</description><subject>Adjustment</subject><subject>C12</subject><subject>C18</subject><subject>C22</subject><subject>Efficiency</subject><subject>Heteroskedasticity and autocorrelation robust inference</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>long‐run variance</subject><subject>Power</subject><subject>Projections</subject><subject>Robustness</subject><subject>Tests</subject><issn>1759-7323</issn><issn>1759-7331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1j0FLAzEQhYMoWGq9eS8I3rYmM5ud5FhKtUKxVOw5ZNMsbFl316RF-u-NrHhz5vDm8PHmPcZuBZ-hVvC4XQoq4IKNBEmdEaK4_LsBr9kkxgNPg0oVJEbsbtMf6w_bTFfzt2ndVj741vkbdlXZJvrJr47Z7mn5vlhl683zy2K-zhwIiZlD7nhOtiqALCVT6SS3UCbVZV5oWcrSOl-QtqIEwFznggCUov1eSytxzO4H3z50nycfj-bQnUKbXhoUaVFJ0ol6GCgXuhiDr0wfUuZwNoKbn9ZmaJ3A2QB-1Y0__0OZ7W7-CilsjvgNL1FSwQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Dou, Liyu</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>202411</creationdate><title>Optimal HAR inference</title><author>Dou, Liyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2153-c30c047af627a70035c50a2b35c9b4695b5bace679a1b2234941722887dd95a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adjustment</topic><topic>C12</topic><topic>C18</topic><topic>C22</topic><topic>Efficiency</topic><topic>Heteroskedasticity and autocorrelation robust inference</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>long‐run variance</topic><topic>Power</topic><topic>Projections</topic><topic>Robustness</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Liyu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Quantitative economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Liyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal HAR inference</atitle><jtitle>Quantitative economics</jtitle><date>2024-11</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>1107</spage><epage>1149</epage><pages>1107-1149</pages><issn>1759-7323</issn><eissn>1759-7331</eissn><abstract>This paper considers the problem of deriving heteroskedasticity and autocorrelation robust (HAR) inference about a scalar parameter of interest. The main assumption is that there is a known upper bound on the degree of persistence in data. I derive finite‐sample optimal tests in the Gaussian location model and show that the robustness‐efficiency tradeoffs embedded in the optimal tests are essentially determined by the maximal persistence. I find that with an appropriate adjustment to the critical value, it is nearly optimal to use the so‐called equal‐weighted cosine (EWC) test, where the long‐run variance is estimated by projections onto q type II cosines. The practical implications are an explicit link between the choice of q and assumptions on the underlying persistence, as well as a corresponding adjustment to the usual Student‐t critical value. I illustrate the results in two empirical examples.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.3982/QE1762</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-7323 |
ispartof | Quantitative economics, 2024-11, Vol.15 (4), p.1107-1149 |
issn | 1759-7323 1759-7331 |
language | eng |
recordid | cdi_proquest_journals_3131338579 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EBSCOhost Business Source Complete; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Adjustment C12 C18 C22 Efficiency Heteroskedasticity and autocorrelation robust inference Hypotheses Hypothesis testing long‐run variance Power Projections Robustness Tests |
title | Optimal HAR inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20HAR%20inference&rft.jtitle=Quantitative%20economics&rft.au=Dou,%20Liyu&rft.date=2024-11&rft.volume=15&rft.issue=4&rft.spage=1107&rft.epage=1149&rft.pages=1107-1149&rft.issn=1759-7323&rft.eissn=1759-7331&rft_id=info:doi/10.3982/QE1762&rft_dat=%3Cproquest_cross%3E3131338579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131338579&rft_id=info:pmid/&rfr_iscdi=true |