Novae heat their food: mass transfer by irradiation

ABSTRACT A nova eruption irradiates and heats the donor star in a cataclysmic variable to high temperatures Tirr, causing its outer layers to expand and overflow the Roche lobe. We calculate the donor’s heating and expansion both analytically and numerically, under the assumption of spherical symmet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-10, Vol.507 (1), p.475-483
Hauptverfasser: Ginzburg, Sivan, Quataert, Eliot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 1
container_start_page 475
container_title Monthly notices of the Royal Astronomical Society
container_volume 507
creator Ginzburg, Sivan
Quataert, Eliot
description ABSTRACT A nova eruption irradiates and heats the donor star in a cataclysmic variable to high temperatures Tirr, causing its outer layers to expand and overflow the Roche lobe. We calculate the donor’s heating and expansion both analytically and numerically, under the assumption of spherical symmetry, and find that irradiation drives enhanced mass transfer from the donor at a rate $\dot{m}\propto T_{\rm irr}^{5/3}$, which reaches $\dot{m}\sim 10^{-6}\textrm {~M}_\odot \textrm {~yr}^{-1}$ at the peak of the eruption – about a thousand times faster than during quiescence. As the nova subsides and the white dwarf cools down, $\dot{m}$ drops to lower values. We find that under certain circumstances, the decline halts and the mass transfer persists at a self-sustaining rate of $\dot{m}\sim 10^{-7}\textrm {~M}_\odot \textrm {~yr}^{-1}$ for up to ∼103 yr after the eruption. At this rate, irradiation by the white dwarf’s accretion luminosity is sufficient to drive the mass transfer on its own. The self-sustaining rate is close to the white dwarf’s stable burning limit, such that this bootstrapping mechanism can simultaneously explain two classes of puzzling binary systems: recurrent novae with orbital periods ≈2 h (T Pyxidis and IM Normae) and long-lived supersoft X-ray sources with periods ≈4 h (RX J0537.7–7034 and 1E 0035.4–7230). Whether or not a system reaches the self-sustaining state is sensitive to the donor’s chromosphere structure, as well as to the orbital period change during nova eruptions.
doi_str_mv 10.1093/mnras/stab2170
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_3131022873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab2170</oup_id><sourcerecordid>3131022873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-9d027989205cd63feb4360c99b3e0ef3e4fe8adbfa54d66358fca03ade77fcd03</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMltiYkj77Jc4MRuq-JIqWGC2XmJbTUXjYrtI_fcUAjPTXc69VzqMXQqYCdA43wyR0jxlaqWo4YhNBKqqkFqpYzYBwKpoaiFO2VlKawAoUaoJw-fwSY6vHGWeV66P3Idgb_iGUuI50pC8i7zd8z5Gsj3lPgzn7MTTe3IXvzllb_d3r4vHYvny8LS4XRYdgsiFtiBr3WgJVWcVeteWqKDTukUHzqMrvWvItp6q0iqFVeM7AiTr6tp3FnDKrsbdbQwfO5eyWYddHA6XBgUKkLKp8UDNRqqLIaXovNnGfkNxbwSYbzHmR4z5E3MoXI-FsNv-x34BnUFmYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131022873</pqid></control><display><type>article</type><title>Novae heat their food: mass transfer by irradiation</title><source>Oxford Journals Open Access Collection</source><creator>Ginzburg, Sivan ; Quataert, Eliot</creator><creatorcontrib>Ginzburg, Sivan ; Quataert, Eliot</creatorcontrib><description>ABSTRACT A nova eruption irradiates and heats the donor star in a cataclysmic variable to high temperatures Tirr, causing its outer layers to expand and overflow the Roche lobe. We calculate the donor’s heating and expansion both analytically and numerically, under the assumption of spherical symmetry, and find that irradiation drives enhanced mass transfer from the donor at a rate $\dot{m}\propto T_{\rm irr}^{5/3}$, which reaches $\dot{m}\sim 10^{-6}\textrm {~M}_\odot \textrm {~yr}^{-1}$ at the peak of the eruption – about a thousand times faster than during quiescence. As the nova subsides and the white dwarf cools down, $\dot{m}$ drops to lower values. We find that under certain circumstances, the decline halts and the mass transfer persists at a self-sustaining rate of $\dot{m}\sim 10^{-7}\textrm {~M}_\odot \textrm {~yr}^{-1}$ for up to ∼103 yr after the eruption. At this rate, irradiation by the white dwarf’s accretion luminosity is sufficient to drive the mass transfer on its own. The self-sustaining rate is close to the white dwarf’s stable burning limit, such that this bootstrapping mechanism can simultaneously explain two classes of puzzling binary systems: recurrent novae with orbital periods ≈2 h (T Pyxidis and IM Normae) and long-lived supersoft X-ray sources with periods ≈4 h (RX J0537.7–7034 and 1E 0035.4–7230). Whether or not a system reaches the self-sustaining state is sensitive to the donor’s chromosphere structure, as well as to the orbital period change during nova eruptions.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab2170</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Burning rate ; Cataclysmic variables ; Chromosphere ; Dwarf novae ; High temperature ; Irradiation ; Luminosity ; Mass transfer ; Novae ; Orbits ; White dwarf stars ; X ray sources</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2021-10, Vol.507 (1), p.475-483</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-9d027989205cd63feb4360c99b3e0ef3e4fe8adbfa54d66358fca03ade77fcd03</citedby><cites>FETCH-LOGICAL-c301t-9d027989205cd63feb4360c99b3e0ef3e4fe8adbfa54d66358fca03ade77fcd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab2170$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Ginzburg, Sivan</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><title>Novae heat their food: mass transfer by irradiation</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT A nova eruption irradiates and heats the donor star in a cataclysmic variable to high temperatures Tirr, causing its outer layers to expand and overflow the Roche lobe. We calculate the donor’s heating and expansion both analytically and numerically, under the assumption of spherical symmetry, and find that irradiation drives enhanced mass transfer from the donor at a rate $\dot{m}\propto T_{\rm irr}^{5/3}$, which reaches $\dot{m}\sim 10^{-6}\textrm {~M}_\odot \textrm {~yr}^{-1}$ at the peak of the eruption – about a thousand times faster than during quiescence. As the nova subsides and the white dwarf cools down, $\dot{m}$ drops to lower values. We find that under certain circumstances, the decline halts and the mass transfer persists at a self-sustaining rate of $\dot{m}\sim 10^{-7}\textrm {~M}_\odot \textrm {~yr}^{-1}$ for up to ∼103 yr after the eruption. At this rate, irradiation by the white dwarf’s accretion luminosity is sufficient to drive the mass transfer on its own. The self-sustaining rate is close to the white dwarf’s stable burning limit, such that this bootstrapping mechanism can simultaneously explain two classes of puzzling binary systems: recurrent novae with orbital periods ≈2 h (T Pyxidis and IM Normae) and long-lived supersoft X-ray sources with periods ≈4 h (RX J0537.7–7034 and 1E 0035.4–7230). Whether or not a system reaches the self-sustaining state is sensitive to the donor’s chromosphere structure, as well as to the orbital period change during nova eruptions.</description><subject>Burning rate</subject><subject>Cataclysmic variables</subject><subject>Chromosphere</subject><subject>Dwarf novae</subject><subject>High temperature</subject><subject>Irradiation</subject><subject>Luminosity</subject><subject>Mass transfer</subject><subject>Novae</subject><subject>Orbits</subject><subject>White dwarf stars</subject><subject>X ray sources</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqWwMltiYkj77Jc4MRuq-JIqWGC2XmJbTUXjYrtI_fcUAjPTXc69VzqMXQqYCdA43wyR0jxlaqWo4YhNBKqqkFqpYzYBwKpoaiFO2VlKawAoUaoJw-fwSY6vHGWeV66P3Idgb_iGUuI50pC8i7zd8z5Gsj3lPgzn7MTTe3IXvzllb_d3r4vHYvny8LS4XRYdgsiFtiBr3WgJVWcVeteWqKDTukUHzqMrvWvItp6q0iqFVeM7AiTr6tp3FnDKrsbdbQwfO5eyWYddHA6XBgUKkLKp8UDNRqqLIaXovNnGfkNxbwSYbzHmR4z5E3MoXI-FsNv-x34BnUFmYg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ginzburg, Sivan</creator><creator>Quataert, Eliot</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211001</creationdate><title>Novae heat their food: mass transfer by irradiation</title><author>Ginzburg, Sivan ; Quataert, Eliot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-9d027989205cd63feb4360c99b3e0ef3e4fe8adbfa54d66358fca03ade77fcd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Burning rate</topic><topic>Cataclysmic variables</topic><topic>Chromosphere</topic><topic>Dwarf novae</topic><topic>High temperature</topic><topic>Irradiation</topic><topic>Luminosity</topic><topic>Mass transfer</topic><topic>Novae</topic><topic>Orbits</topic><topic>White dwarf stars</topic><topic>X ray sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginzburg, Sivan</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ginzburg, Sivan</au><au>Quataert, Eliot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novae heat their food: mass transfer by irradiation</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>507</volume><issue>1</issue><spage>475</spage><epage>483</epage><pages>475-483</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT A nova eruption irradiates and heats the donor star in a cataclysmic variable to high temperatures Tirr, causing its outer layers to expand and overflow the Roche lobe. We calculate the donor’s heating and expansion both analytically and numerically, under the assumption of spherical symmetry, and find that irradiation drives enhanced mass transfer from the donor at a rate $\dot{m}\propto T_{\rm irr}^{5/3}$, which reaches $\dot{m}\sim 10^{-6}\textrm {~M}_\odot \textrm {~yr}^{-1}$ at the peak of the eruption – about a thousand times faster than during quiescence. As the nova subsides and the white dwarf cools down, $\dot{m}$ drops to lower values. We find that under certain circumstances, the decline halts and the mass transfer persists at a self-sustaining rate of $\dot{m}\sim 10^{-7}\textrm {~M}_\odot \textrm {~yr}^{-1}$ for up to ∼103 yr after the eruption. At this rate, irradiation by the white dwarf’s accretion luminosity is sufficient to drive the mass transfer on its own. The self-sustaining rate is close to the white dwarf’s stable burning limit, such that this bootstrapping mechanism can simultaneously explain two classes of puzzling binary systems: recurrent novae with orbital periods ≈2 h (T Pyxidis and IM Normae) and long-lived supersoft X-ray sources with periods ≈4 h (RX J0537.7–7034 and 1E 0035.4–7230). Whether or not a system reaches the self-sustaining state is sensitive to the donor’s chromosphere structure, as well as to the orbital period change during nova eruptions.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stab2170</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-10, Vol.507 (1), p.475-483
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_3131022873
source Oxford Journals Open Access Collection
subjects Burning rate
Cataclysmic variables
Chromosphere
Dwarf novae
High temperature
Irradiation
Luminosity
Mass transfer
Novae
Orbits
White dwarf stars
X ray sources
title Novae heat their food: mass transfer by irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novae%20heat%20their%20food:%20mass%20transfer%20by%20irradiation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Ginzburg,%20Sivan&rft.date=2021-10-01&rft.volume=507&rft.issue=1&rft.spage=475&rft.epage=483&rft.pages=475-483&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab2170&rft_dat=%3Cproquest_TOX%3E3131022873%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131022873&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab2170&rfr_iscdi=true