CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network

Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-19
Hauptverfasser: Xing, Jianghe, Zhang, Jue, Li, Jun, Gao, Yongsheng, Du, Shouhang, Zhang, Chengye, Wang, Yanheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Xing, Jianghe
Zhang, Jue
Li, Jun
Gao, Yongsheng
Du, Shouhang
Zhang, Chengye
Wang, Yanheng
description Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong correlation between the two tasks and their potential mutual benefits, this article presents a hybrid convolutional neural network (CNN)-Transformer multitask network (CTMNet). Constructed in an encoder-decoder manner, CTMNet has two sperate extraction paths (EPs) to localize the regions of interest for bi-temporal images, along with a change detection path (CDP) to identify discrepancies by differentiating the multiscale feature representations from the EPs. As the basic building block for the EP, a CNN-Transformer hybrid block is designed to enhance the global and local feature representation capacity. To cope with the variations in the bi-temporal images, we propose the feature alignment module for the CDP. A hard sample mining-based contrastive constraint loss is proposed to emphasize the contributions of hard samples to the training process. The experimental results on a collected open-pit mine extraction and change detection dataset (OMECSet) and two public datasets reveal the validity of the CTMNet when compared to the state-of-the-art methods. The OMECSet and the code of CTMNet have been made public available at https://figshare.com/s/80519cb980ca54456447 .
doi_str_mv 10.1109/TGRS.2024.3492715
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3130924909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745758</ieee_id><sourcerecordid>3130924909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c919-5e5a21b34403c1b1aaf95d47c68cc0478d8a7e9214c26cab5d1c0d0bbdbf7ce3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzmY3yXqTWluhH2IDHsNmM7Fp66Zutmj_vSnpwdPAzPPOCw8ht8AGAEw9pOP35YAzLgahUDwGeUZ6IGUSsEiIc9JjoKKAJ4pfkqumWTMGQkLcI3aYzuboH-nIrrQ1WNDFDm3wVnk6qyzS0a932viqtlTbgg5b6BPpM3rslh-VX1FNJ4fcVe15Pg9Sp21T1u4LHZ3tt77yutnQtuOndptrclHqbYM3p9kny5dROpwE08X4dfg0DYwCFUiUmkMeCsFCAzloXSpZiNhEiTFMxEmR6BgVB2F4ZHQuCzCsYHle5GVsMOyT--7rztXfe2x8tq73zraFWQghU1woploKOsq4umkcltnOVV_aHTJg2VFqdpSaHaVmJ6lt5q7LVIj4j4-FjGUS_gGYRXOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130924909</pqid></control><display><type>article</type><title>CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network</title><source>IEEE Electronic Library (IEL)</source><creator>Xing, Jianghe ; Zhang, Jue ; Li, Jun ; Gao, Yongsheng ; Du, Shouhang ; Zhang, Chengye ; Wang, Yanheng</creator><creatorcontrib>Xing, Jianghe ; Zhang, Jue ; Li, Jun ; Gao, Yongsheng ; Du, Shouhang ; Zhang, Chengye ; Wang, Yanheng</creatorcontrib><description>Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong correlation between the two tasks and their potential mutual benefits, this article presents a hybrid convolutional neural network (CNN)-Transformer multitask network (CTMNet). Constructed in an encoder-decoder manner, CTMNet has two sperate extraction paths (EPs) to localize the regions of interest for bi-temporal images, along with a change detection path (CDP) to identify discrepancies by differentiating the multiscale feature representations from the EPs. As the basic building block for the EP, a CNN-Transformer hybrid block is designed to enhance the global and local feature representation capacity. To cope with the variations in the bi-temporal images, we propose the feature alignment module for the CDP. A hard sample mining-based contrastive constraint loss is proposed to emphasize the contributions of hard samples to the training process. The experimental results on a collected open-pit mine extraction and change detection dataset (OMECSet) and two public datasets reveal the validity of the CTMNet when compared to the state-of-the-art methods. The OMECSet and the code of CTMNet have been made public available at https://figshare.com/s/80519cb980ca54456447 .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3492715</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Change detection ; Change detection algorithms ; contrastive constraint ; Data mining ; Datasets ; Distortion ; Electronic mail ; Encoders-Decoders ; feature alignment ; Feature extraction ; Heterogeneity ; Image enhancement ; Image resolution ; Machine learning algorithms ; Mineral resources ; Mineral resources management ; Neural networks ; object extraction ; Open pit mining ; open-pit mine ; Patchiness ; Remote sensing ; Representations ; Resource management ; Shape ; Spatial heterogeneity ; Transformers</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c919-5e5a21b34403c1b1aaf95d47c68cc0478d8a7e9214c26cab5d1c0d0bbdbf7ce3</cites><orcidid>0000-0003-3135-092X ; 0000-0002-4902-8704 ; 0000-0002-0832-0864 ; 0000-0001-6090-3234 ; 0000-0003-3427-3456 ; 0000-0002-5382-5351 ; 0000-0001-6012-7175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10745758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Jianghe</creatorcontrib><creatorcontrib>Zhang, Jue</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Gao, Yongsheng</creatorcontrib><creatorcontrib>Du, Shouhang</creatorcontrib><creatorcontrib>Zhang, Chengye</creatorcontrib><creatorcontrib>Wang, Yanheng</creatorcontrib><title>CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong correlation between the two tasks and their potential mutual benefits, this article presents a hybrid convolutional neural network (CNN)-Transformer multitask network (CTMNet). Constructed in an encoder-decoder manner, CTMNet has two sperate extraction paths (EPs) to localize the regions of interest for bi-temporal images, along with a change detection path (CDP) to identify discrepancies by differentiating the multiscale feature representations from the EPs. As the basic building block for the EP, a CNN-Transformer hybrid block is designed to enhance the global and local feature representation capacity. To cope with the variations in the bi-temporal images, we propose the feature alignment module for the CDP. A hard sample mining-based contrastive constraint loss is proposed to emphasize the contributions of hard samples to the training process. The experimental results on a collected open-pit mine extraction and change detection dataset (OMECSet) and two public datasets reveal the validity of the CTMNet when compared to the state-of-the-art methods. The OMECSet and the code of CTMNet have been made public available at https://figshare.com/s/80519cb980ca54456447 .</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Change detection</subject><subject>Change detection algorithms</subject><subject>contrastive constraint</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Distortion</subject><subject>Electronic mail</subject><subject>Encoders-Decoders</subject><subject>feature alignment</subject><subject>Feature extraction</subject><subject>Heterogeneity</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Machine learning algorithms</subject><subject>Mineral resources</subject><subject>Mineral resources management</subject><subject>Neural networks</subject><subject>object extraction</subject><subject>Open pit mining</subject><subject>open-pit mine</subject><subject>Patchiness</subject><subject>Remote sensing</subject><subject>Representations</subject><subject>Resource management</subject><subject>Shape</subject><subject>Spatial heterogeneity</subject><subject>Transformers</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzmY3yXqTWluhH2IDHsNmM7Fp66Zutmj_vSnpwdPAzPPOCw8ht8AGAEw9pOP35YAzLgahUDwGeUZ6IGUSsEiIc9JjoKKAJ4pfkqumWTMGQkLcI3aYzuboH-nIrrQ1WNDFDm3wVnk6qyzS0a932viqtlTbgg5b6BPpM3rslh-VX1FNJ4fcVe15Pg9Sp21T1u4LHZ3tt77yutnQtuOndptrclHqbYM3p9kny5dROpwE08X4dfg0DYwCFUiUmkMeCsFCAzloXSpZiNhEiTFMxEmR6BgVB2F4ZHQuCzCsYHle5GVsMOyT--7rztXfe2x8tq73zraFWQghU1woploKOsq4umkcltnOVV_aHTJg2VFqdpSaHaVmJ6lt5q7LVIj4j4-FjGUS_gGYRXOE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xing, Jianghe</creator><creator>Zhang, Jue</creator><creator>Li, Jun</creator><creator>Gao, Yongsheng</creator><creator>Du, Shouhang</creator><creator>Zhang, Chengye</creator><creator>Wang, Yanheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3135-092X</orcidid><orcidid>https://orcid.org/0000-0002-4902-8704</orcidid><orcidid>https://orcid.org/0000-0002-0832-0864</orcidid><orcidid>https://orcid.org/0000-0001-6090-3234</orcidid><orcidid>https://orcid.org/0000-0003-3427-3456</orcidid><orcidid>https://orcid.org/0000-0002-5382-5351</orcidid><orcidid>https://orcid.org/0000-0001-6012-7175</orcidid></search><sort><creationdate>2024</creationdate><title>CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network</title><author>Xing, Jianghe ; Zhang, Jue ; Li, Jun ; Gao, Yongsheng ; Du, Shouhang ; Zhang, Chengye ; Wang, Yanheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c919-5e5a21b34403c1b1aaf95d47c68cc0478d8a7e9214c26cab5d1c0d0bbdbf7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Change detection</topic><topic>Change detection algorithms</topic><topic>contrastive constraint</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Distortion</topic><topic>Electronic mail</topic><topic>Encoders-Decoders</topic><topic>feature alignment</topic><topic>Feature extraction</topic><topic>Heterogeneity</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Machine learning algorithms</topic><topic>Mineral resources</topic><topic>Mineral resources management</topic><topic>Neural networks</topic><topic>object extraction</topic><topic>Open pit mining</topic><topic>open-pit mine</topic><topic>Patchiness</topic><topic>Remote sensing</topic><topic>Representations</topic><topic>Resource management</topic><topic>Shape</topic><topic>Spatial heterogeneity</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Jianghe</creatorcontrib><creatorcontrib>Zhang, Jue</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Gao, Yongsheng</creatorcontrib><creatorcontrib>Du, Shouhang</creatorcontrib><creatorcontrib>Zhang, Chengye</creatorcontrib><creatorcontrib>Wang, Yanheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Jianghe</au><au>Zhang, Jue</au><au>Li, Jun</au><au>Gao, Yongsheng</au><au>Du, Shouhang</au><au>Zhang, Chengye</au><au>Wang, Yanheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong correlation between the two tasks and their potential mutual benefits, this article presents a hybrid convolutional neural network (CNN)-Transformer multitask network (CTMNet). Constructed in an encoder-decoder manner, CTMNet has two sperate extraction paths (EPs) to localize the regions of interest for bi-temporal images, along with a change detection path (CDP) to identify discrepancies by differentiating the multiscale feature representations from the EPs. As the basic building block for the EP, a CNN-Transformer hybrid block is designed to enhance the global and local feature representation capacity. To cope with the variations in the bi-temporal images, we propose the feature alignment module for the CDP. A hard sample mining-based contrastive constraint loss is proposed to emphasize the contributions of hard samples to the training process. The experimental results on a collected open-pit mine extraction and change detection dataset (OMECSet) and two public datasets reveal the validity of the CTMNet when compared to the state-of-the-art methods. The OMECSet and the code of CTMNet have been made public available at https://figshare.com/s/80519cb980ca54456447 .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3492715</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3135-092X</orcidid><orcidid>https://orcid.org/0000-0002-4902-8704</orcidid><orcidid>https://orcid.org/0000-0002-0832-0864</orcidid><orcidid>https://orcid.org/0000-0001-6090-3234</orcidid><orcidid>https://orcid.org/0000-0003-3427-3456</orcidid><orcidid>https://orcid.org/0000-0002-5382-5351</orcidid><orcidid>https://orcid.org/0000-0001-6012-7175</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-19
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_3130924909
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial neural networks
Change detection
Change detection algorithms
contrastive constraint
Data mining
Datasets
Distortion
Electronic mail
Encoders-Decoders
feature alignment
Feature extraction
Heterogeneity
Image enhancement
Image resolution
Machine learning algorithms
Mineral resources
Mineral resources management
Neural networks
object extraction
Open pit mining
open-pit mine
Patchiness
Remote sensing
Representations
Resource management
Shape
Spatial heterogeneity
Transformers
title CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CTMNet:%20Enhanced%20Open-Pit%20Mine%20Extraction%20and%20Change%20Detection%20With%20a%20Hybrid%20CNN-Transformer%20Multitask%20Network&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xing,%20Jianghe&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3492715&rft_dat=%3Cproquest_RIE%3E3130924909%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130924909&rft_id=info:pmid/&rft_ieee_id=10745758&rfr_iscdi=true