CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network
Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-19 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Xing, Jianghe Zhang, Jue Li, Jun Gao, Yongsheng Du, Shouhang Zhang, Chengye Wang, Yanheng |
description | Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong correlation between the two tasks and their potential mutual benefits, this article presents a hybrid convolutional neural network (CNN)-Transformer multitask network (CTMNet). Constructed in an encoder-decoder manner, CTMNet has two sperate extraction paths (EPs) to localize the regions of interest for bi-temporal images, along with a change detection path (CDP) to identify discrepancies by differentiating the multiscale feature representations from the EPs. As the basic building block for the EP, a CNN-Transformer hybrid block is designed to enhance the global and local feature representation capacity. To cope with the variations in the bi-temporal images, we propose the feature alignment module for the CDP. A hard sample mining-based contrastive constraint loss is proposed to emphasize the contributions of hard samples to the training process. The experimental results on a collected open-pit mine extraction and change detection dataset (OMECSet) and two public datasets reveal the validity of the CTMNet when compared to the state-of-the-art methods. The OMECSet and the code of CTMNet have been made public available at https://figshare.com/s/80519cb980ca54456447 . |
doi_str_mv | 10.1109/TGRS.2024.3492715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3130924909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745758</ieee_id><sourcerecordid>3130924909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c919-5e5a21b34403c1b1aaf95d47c68cc0478d8a7e9214c26cab5d1c0d0bbdbf7ce3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzmY3yXqTWluhH2IDHsNmM7Fp66Zutmj_vSnpwdPAzPPOCw8ht8AGAEw9pOP35YAzLgahUDwGeUZ6IGUSsEiIc9JjoKKAJ4pfkqumWTMGQkLcI3aYzuboH-nIrrQ1WNDFDm3wVnk6qyzS0a932viqtlTbgg5b6BPpM3rslh-VX1FNJ4fcVe15Pg9Sp21T1u4LHZ3tt77yutnQtuOndptrclHqbYM3p9kny5dROpwE08X4dfg0DYwCFUiUmkMeCsFCAzloXSpZiNhEiTFMxEmR6BgVB2F4ZHQuCzCsYHle5GVsMOyT--7rztXfe2x8tq73zraFWQghU1woploKOsq4umkcltnOVV_aHTJg2VFqdpSaHaVmJ6lt5q7LVIj4j4-FjGUS_gGYRXOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130924909</pqid></control><display><type>article</type><title>CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network</title><source>IEEE Electronic Library (IEL)</source><creator>Xing, Jianghe ; Zhang, Jue ; Li, Jun ; Gao, Yongsheng ; Du, Shouhang ; Zhang, Chengye ; Wang, Yanheng</creator><creatorcontrib>Xing, Jianghe ; Zhang, Jue ; Li, Jun ; Gao, Yongsheng ; Du, Shouhang ; Zhang, Chengye ; Wang, Yanheng</creatorcontrib><description>Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong correlation between the two tasks and their potential mutual benefits, this article presents a hybrid convolutional neural network (CNN)-Transformer multitask network (CTMNet). Constructed in an encoder-decoder manner, CTMNet has two sperate extraction paths (EPs) to localize the regions of interest for bi-temporal images, along with a change detection path (CDP) to identify discrepancies by differentiating the multiscale feature representations from the EPs. As the basic building block for the EP, a CNN-Transformer hybrid block is designed to enhance the global and local feature representation capacity. To cope with the variations in the bi-temporal images, we propose the feature alignment module for the CDP. A hard sample mining-based contrastive constraint loss is proposed to emphasize the contributions of hard samples to the training process. The experimental results on a collected open-pit mine extraction and change detection dataset (OMECSet) and two public datasets reveal the validity of the CTMNet when compared to the state-of-the-art methods. The OMECSet and the code of CTMNet have been made public available at https://figshare.com/s/80519cb980ca54456447 .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3492715</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Change detection ; Change detection algorithms ; contrastive constraint ; Data mining ; Datasets ; Distortion ; Electronic mail ; Encoders-Decoders ; feature alignment ; Feature extraction ; Heterogeneity ; Image enhancement ; Image resolution ; Machine learning algorithms ; Mineral resources ; Mineral resources management ; Neural networks ; object extraction ; Open pit mining ; open-pit mine ; Patchiness ; Remote sensing ; Representations ; Resource management ; Shape ; Spatial heterogeneity ; Transformers</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c919-5e5a21b34403c1b1aaf95d47c68cc0478d8a7e9214c26cab5d1c0d0bbdbf7ce3</cites><orcidid>0000-0003-3135-092X ; 0000-0002-4902-8704 ; 0000-0002-0832-0864 ; 0000-0001-6090-3234 ; 0000-0003-3427-3456 ; 0000-0002-5382-5351 ; 0000-0001-6012-7175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10745758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Jianghe</creatorcontrib><creatorcontrib>Zhang, Jue</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Gao, Yongsheng</creatorcontrib><creatorcontrib>Du, Shouhang</creatorcontrib><creatorcontrib>Zhang, Chengye</creatorcontrib><creatorcontrib>Wang, Yanheng</creatorcontrib><title>CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong correlation between the two tasks and their potential mutual benefits, this article presents a hybrid convolutional neural network (CNN)-Transformer multitask network (CTMNet). Constructed in an encoder-decoder manner, CTMNet has two sperate extraction paths (EPs) to localize the regions of interest for bi-temporal images, along with a change detection path (CDP) to identify discrepancies by differentiating the multiscale feature representations from the EPs. As the basic building block for the EP, a CNN-Transformer hybrid block is designed to enhance the global and local feature representation capacity. To cope with the variations in the bi-temporal images, we propose the feature alignment module for the CDP. A hard sample mining-based contrastive constraint loss is proposed to emphasize the contributions of hard samples to the training process. The experimental results on a collected open-pit mine extraction and change detection dataset (OMECSet) and two public datasets reveal the validity of the CTMNet when compared to the state-of-the-art methods. The OMECSet and the code of CTMNet have been made public available at https://figshare.com/s/80519cb980ca54456447 .</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Change detection</subject><subject>Change detection algorithms</subject><subject>contrastive constraint</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Distortion</subject><subject>Electronic mail</subject><subject>Encoders-Decoders</subject><subject>feature alignment</subject><subject>Feature extraction</subject><subject>Heterogeneity</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Machine learning algorithms</subject><subject>Mineral resources</subject><subject>Mineral resources management</subject><subject>Neural networks</subject><subject>object extraction</subject><subject>Open pit mining</subject><subject>open-pit mine</subject><subject>Patchiness</subject><subject>Remote sensing</subject><subject>Representations</subject><subject>Resource management</subject><subject>Shape</subject><subject>Spatial heterogeneity</subject><subject>Transformers</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzmY3yXqTWluhH2IDHsNmM7Fp66Zutmj_vSnpwdPAzPPOCw8ht8AGAEw9pOP35YAzLgahUDwGeUZ6IGUSsEiIc9JjoKKAJ4pfkqumWTMGQkLcI3aYzuboH-nIrrQ1WNDFDm3wVnk6qyzS0a932viqtlTbgg5b6BPpM3rslh-VX1FNJ4fcVe15Pg9Sp21T1u4LHZ3tt77yutnQtuOndptrclHqbYM3p9kny5dROpwE08X4dfg0DYwCFUiUmkMeCsFCAzloXSpZiNhEiTFMxEmR6BgVB2F4ZHQuCzCsYHle5GVsMOyT--7rztXfe2x8tq73zraFWQghU1woploKOsq4umkcltnOVV_aHTJg2VFqdpSaHaVmJ6lt5q7LVIj4j4-FjGUS_gGYRXOE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xing, Jianghe</creator><creator>Zhang, Jue</creator><creator>Li, Jun</creator><creator>Gao, Yongsheng</creator><creator>Du, Shouhang</creator><creator>Zhang, Chengye</creator><creator>Wang, Yanheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3135-092X</orcidid><orcidid>https://orcid.org/0000-0002-4902-8704</orcidid><orcidid>https://orcid.org/0000-0002-0832-0864</orcidid><orcidid>https://orcid.org/0000-0001-6090-3234</orcidid><orcidid>https://orcid.org/0000-0003-3427-3456</orcidid><orcidid>https://orcid.org/0000-0002-5382-5351</orcidid><orcidid>https://orcid.org/0000-0001-6012-7175</orcidid></search><sort><creationdate>2024</creationdate><title>CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network</title><author>Xing, Jianghe ; Zhang, Jue ; Li, Jun ; Gao, Yongsheng ; Du, Shouhang ; Zhang, Chengye ; Wang, Yanheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c919-5e5a21b34403c1b1aaf95d47c68cc0478d8a7e9214c26cab5d1c0d0bbdbf7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Change detection</topic><topic>Change detection algorithms</topic><topic>contrastive constraint</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Distortion</topic><topic>Electronic mail</topic><topic>Encoders-Decoders</topic><topic>feature alignment</topic><topic>Feature extraction</topic><topic>Heterogeneity</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Machine learning algorithms</topic><topic>Mineral resources</topic><topic>Mineral resources management</topic><topic>Neural networks</topic><topic>object extraction</topic><topic>Open pit mining</topic><topic>open-pit mine</topic><topic>Patchiness</topic><topic>Remote sensing</topic><topic>Representations</topic><topic>Resource management</topic><topic>Shape</topic><topic>Spatial heterogeneity</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Jianghe</creatorcontrib><creatorcontrib>Zhang, Jue</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Gao, Yongsheng</creatorcontrib><creatorcontrib>Du, Shouhang</creatorcontrib><creatorcontrib>Zhang, Chengye</creatorcontrib><creatorcontrib>Wang, Yanheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Jianghe</au><au>Zhang, Jue</au><au>Li, Jun</au><au>Gao, Yongsheng</au><au>Du, Shouhang</au><au>Zhang, Chengye</au><au>Wang, Yanheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Automatic open-pit mine extraction and change detection from high-resolution remote sensing images are of great importance to mineral resource management. However, the high spatial heterogeneity and spectral variations of mining area scenarios make these tasks challenging. Motivated by the strong correlation between the two tasks and their potential mutual benefits, this article presents a hybrid convolutional neural network (CNN)-Transformer multitask network (CTMNet). Constructed in an encoder-decoder manner, CTMNet has two sperate extraction paths (EPs) to localize the regions of interest for bi-temporal images, along with a change detection path (CDP) to identify discrepancies by differentiating the multiscale feature representations from the EPs. As the basic building block for the EP, a CNN-Transformer hybrid block is designed to enhance the global and local feature representation capacity. To cope with the variations in the bi-temporal images, we propose the feature alignment module for the CDP. A hard sample mining-based contrastive constraint loss is proposed to emphasize the contributions of hard samples to the training process. The experimental results on a collected open-pit mine extraction and change detection dataset (OMECSet) and two public datasets reveal the validity of the CTMNet when compared to the state-of-the-art methods. The OMECSet and the code of CTMNet have been made public available at https://figshare.com/s/80519cb980ca54456447 .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3492715</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3135-092X</orcidid><orcidid>https://orcid.org/0000-0002-4902-8704</orcidid><orcidid>https://orcid.org/0000-0002-0832-0864</orcidid><orcidid>https://orcid.org/0000-0001-6090-3234</orcidid><orcidid>https://orcid.org/0000-0003-3427-3456</orcidid><orcidid>https://orcid.org/0000-0002-5382-5351</orcidid><orcidid>https://orcid.org/0000-0001-6012-7175</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-19 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_3130924909 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Artificial neural networks Change detection Change detection algorithms contrastive constraint Data mining Datasets Distortion Electronic mail Encoders-Decoders feature alignment Feature extraction Heterogeneity Image enhancement Image resolution Machine learning algorithms Mineral resources Mineral resources management Neural networks object extraction Open pit mining open-pit mine Patchiness Remote sensing Representations Resource management Shape Spatial heterogeneity Transformers |
title | CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CTMNet:%20Enhanced%20Open-Pit%20Mine%20Extraction%20and%20Change%20Detection%20With%20a%20Hybrid%20CNN-Transformer%20Multitask%20Network&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xing,%20Jianghe&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3492715&rft_dat=%3Cproquest_RIE%3E3130924909%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130924909&rft_id=info:pmid/&rft_ieee_id=10745758&rfr_iscdi=true |