SiC Reinforced AISI 434L Stainless Steel Thin-Wall Structure Fabrication by TIG-Aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) Method

The potential of tungsten inert gas-aided powder bed fusion-type arc additive manufacturing (TIG PBF-AAM) technique in the fabrication of thin-wall structure using SiC (0, 5, 7.5, 10 wt pct) blended AISI 434L steel powder has been demonstrated. The acceptance of the method can been justified through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2024-12, Vol.55 (6), p.5175-5189
Hauptverfasser: Khan, M. D. Aseef, Masanta, Manoj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5189
container_issue 6
container_start_page 5175
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 55
creator Khan, M. D. Aseef
Masanta, Manoj
description The potential of tungsten inert gas-aided powder bed fusion-type arc additive manufacturing (TIG PBF-AAM) technique in the fabrication of thin-wall structure using SiC (0, 5, 7.5, 10 wt pct) blended AISI 434L steel powder has been demonstrated. The acceptance of the method can been justified through the strong interlayer bonding, between the deposited layers, and favourable mechanical properties of the fabricated part, despite the limitations like geometrical inaccuracy, discontinuity and cracks in the deposited layers. An outstanding deposition rate (1.3 kg/h) makes the process close contender to TIG-based wire arc additive manufacturing technique (1–2 kg/h). Depending on the SiC content, the formation of cellular and/or flower-like dendritic structure, or reinforced particle-like structure indicates the possibility of SiC particle dilution within the matrix phase. The XRD analysis shows the presence of α -ferrite and martensite phases for 0 wt pct SiC reinforcement. However, cubic-SiC in combination with some metallic carbides and intermetallic phases was detected for SiC incorporation with AISI 434L steel. The fabricated composite structure exhibited high microhardness (up to 626 HV 0.05 ) and more than two times improved wear resistance than the AISI 434L SS structure. Nevertheless, a marginal reduction in the corrosion resistance was noticed in the SiC-incorporated specimens.
doi_str_mv 10.1007/s11663-024-03326-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130568406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130568406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-25a8613c37ebe4cc4a7af399f1d8bcd312715b37d6a36f27bdc261322d6acaad3</originalsourceid><addsrcrecordid>eNp9UUFOwzAQjBBIlMIHOFniAgeD7U2c5phWtFRqRUWLOFqO7VBXISl2AupL-C4uReLGaWd3Z2a1mii6pOSWEpLeeUo5B0xYjAkA4zg5ino0iQHTjPLjgEkKOOE0OY3OvN8QQniWQS_6WtoRejK2LhunjEb5dDlFMcQztGylrSvjfUDGVGi1tjV-kVUVeteptnMGjWXhrJKtbWpU7NBqOsG51cFm0Xxq49AwwHHn9-vcKZRrbVv7YdBc1l0p9x62fkXXQYcWwzHO8_kNmpt23ejz6KSUlTcXv7UfPY_vV6MHPHucTEf5DCtGSItZIgecgoLUFCZWKpapLCHLSqoHhdJAWUqTAlLNJfCSpYVWLPAZCwMlpYZ-dHXw3brmvTO-FZumc3U4KYACSfggJjyw2IGlXOO9M6XYOvsm3U5QIvYBiEMAIgQgfgIQSRDBQeS3-zeN-7P-R_UNnl6HHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130568406</pqid></control><display><type>article</type><title>SiC Reinforced AISI 434L Stainless Steel Thin-Wall Structure Fabrication by TIG-Aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) Method</title><source>Springer Nature - Complete Springer Journals</source><creator>Khan, M. D. Aseef ; Masanta, Manoj</creator><creatorcontrib>Khan, M. D. Aseef ; Masanta, Manoj</creatorcontrib><description>The potential of tungsten inert gas-aided powder bed fusion-type arc additive manufacturing (TIG PBF-AAM) technique in the fabrication of thin-wall structure using SiC (0, 5, 7.5, 10 wt pct) blended AISI 434L steel powder has been demonstrated. The acceptance of the method can been justified through the strong interlayer bonding, between the deposited layers, and favourable mechanical properties of the fabricated part, despite the limitations like geometrical inaccuracy, discontinuity and cracks in the deposited layers. An outstanding deposition rate (1.3 kg/h) makes the process close contender to TIG-based wire arc additive manufacturing technique (1–2 kg/h). Depending on the SiC content, the formation of cellular and/or flower-like dendritic structure, or reinforced particle-like structure indicates the possibility of SiC particle dilution within the matrix phase. The XRD analysis shows the presence of α -ferrite and martensite phases for 0 wt pct SiC reinforcement. However, cubic-SiC in combination with some metallic carbides and intermetallic phases was detected for SiC incorporation with AISI 434L steel. The fabricated composite structure exhibited high microhardness (up to 626 HV 0.05 ) and more than two times improved wear resistance than the AISI 434L SS structure. Nevertheless, a marginal reduction in the corrosion resistance was noticed in the SiC-incorporated specimens.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-024-03326-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Additive manufacturing ; Alloys ; Arc deposition ; Bonding strength ; Cellular structure ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composite materials ; Composite structures ; Corrosion resistance ; Corrosive wear ; Dendritic structure ; Dilution ; Ferritic stainless steel ; Heat conductivity ; Interlayers ; Intermetallic phases ; Lasers ; Manufacturing ; Martensite ; Materials Science ; Mechanical properties ; Metallic Materials ; Microhardness ; Nanotechnology ; Operating costs ; Original Research Article ; Powder beds ; Powder metallurgy ; Rare gases ; Raw materials ; Silicon carbide ; Spray forming ; Stainless steels ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Thin wall structures ; Wear resistance</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2024-12, Vol.55 (6), p.5175-5189</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-25a8613c37ebe4cc4a7af399f1d8bcd312715b37d6a36f27bdc261322d6acaad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-024-03326-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-024-03326-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Khan, M. D. Aseef</creatorcontrib><creatorcontrib>Masanta, Manoj</creatorcontrib><title>SiC Reinforced AISI 434L Stainless Steel Thin-Wall Structure Fabrication by TIG-Aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) Method</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The potential of tungsten inert gas-aided powder bed fusion-type arc additive manufacturing (TIG PBF-AAM) technique in the fabrication of thin-wall structure using SiC (0, 5, 7.5, 10 wt pct) blended AISI 434L steel powder has been demonstrated. The acceptance of the method can been justified through the strong interlayer bonding, between the deposited layers, and favourable mechanical properties of the fabricated part, despite the limitations like geometrical inaccuracy, discontinuity and cracks in the deposited layers. An outstanding deposition rate (1.3 kg/h) makes the process close contender to TIG-based wire arc additive manufacturing technique (1–2 kg/h). Depending on the SiC content, the formation of cellular and/or flower-like dendritic structure, or reinforced particle-like structure indicates the possibility of SiC particle dilution within the matrix phase. The XRD analysis shows the presence of α -ferrite and martensite phases for 0 wt pct SiC reinforcement. However, cubic-SiC in combination with some metallic carbides and intermetallic phases was detected for SiC incorporation with AISI 434L steel. The fabricated composite structure exhibited high microhardness (up to 626 HV 0.05 ) and more than two times improved wear resistance than the AISI 434L SS structure. Nevertheless, a marginal reduction in the corrosion resistance was noticed in the SiC-incorporated specimens.</description><subject>Accuracy</subject><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Arc deposition</subject><subject>Bonding strength</subject><subject>Cellular structure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Corrosion resistance</subject><subject>Corrosive wear</subject><subject>Dendritic structure</subject><subject>Dilution</subject><subject>Ferritic stainless steel</subject><subject>Heat conductivity</subject><subject>Interlayers</subject><subject>Intermetallic phases</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Martensite</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Nanotechnology</subject><subject>Operating costs</subject><subject>Original Research Article</subject><subject>Powder beds</subject><subject>Powder metallurgy</subject><subject>Rare gases</subject><subject>Raw materials</subject><subject>Silicon carbide</subject><subject>Spray forming</subject><subject>Stainless steels</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Thin wall structures</subject><subject>Wear resistance</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UUFOwzAQjBBIlMIHOFniAgeD7U2c5phWtFRqRUWLOFqO7VBXISl2AupL-C4uReLGaWd3Z2a1mii6pOSWEpLeeUo5B0xYjAkA4zg5ino0iQHTjPLjgEkKOOE0OY3OvN8QQniWQS_6WtoRejK2LhunjEb5dDlFMcQztGylrSvjfUDGVGi1tjV-kVUVeteptnMGjWXhrJKtbWpU7NBqOsG51cFm0Xxq49AwwHHn9-vcKZRrbVv7YdBc1l0p9x62fkXXQYcWwzHO8_kNmpt23ejz6KSUlTcXv7UfPY_vV6MHPHucTEf5DCtGSItZIgecgoLUFCZWKpapLCHLSqoHhdJAWUqTAlLNJfCSpYVWLPAZCwMlpYZ-dHXw3brmvTO-FZumc3U4KYACSfggJjyw2IGlXOO9M6XYOvsm3U5QIvYBiEMAIgQgfgIQSRDBQeS3-zeN-7P-R_UNnl6HHg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Khan, M. D. Aseef</creator><creator>Masanta, Manoj</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241201</creationdate><title>SiC Reinforced AISI 434L Stainless Steel Thin-Wall Structure Fabrication by TIG-Aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) Method</title><author>Khan, M. D. Aseef ; Masanta, Manoj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-25a8613c37ebe4cc4a7af399f1d8bcd312715b37d6a36f27bdc261322d6acaad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Arc deposition</topic><topic>Bonding strength</topic><topic>Cellular structure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Corrosion resistance</topic><topic>Corrosive wear</topic><topic>Dendritic structure</topic><topic>Dilution</topic><topic>Ferritic stainless steel</topic><topic>Heat conductivity</topic><topic>Interlayers</topic><topic>Intermetallic phases</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Martensite</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Nanotechnology</topic><topic>Operating costs</topic><topic>Original Research Article</topic><topic>Powder beds</topic><topic>Powder metallurgy</topic><topic>Rare gases</topic><topic>Raw materials</topic><topic>Silicon carbide</topic><topic>Spray forming</topic><topic>Stainless steels</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Thin wall structures</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, M. D. Aseef</creatorcontrib><creatorcontrib>Masanta, Manoj</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, M. D. Aseef</au><au>Masanta, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SiC Reinforced AISI 434L Stainless Steel Thin-Wall Structure Fabrication by TIG-Aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) Method</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>55</volume><issue>6</issue><spage>5175</spage><epage>5189</epage><pages>5175-5189</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>The potential of tungsten inert gas-aided powder bed fusion-type arc additive manufacturing (TIG PBF-AAM) technique in the fabrication of thin-wall structure using SiC (0, 5, 7.5, 10 wt pct) blended AISI 434L steel powder has been demonstrated. The acceptance of the method can been justified through the strong interlayer bonding, between the deposited layers, and favourable mechanical properties of the fabricated part, despite the limitations like geometrical inaccuracy, discontinuity and cracks in the deposited layers. An outstanding deposition rate (1.3 kg/h) makes the process close contender to TIG-based wire arc additive manufacturing technique (1–2 kg/h). Depending on the SiC content, the formation of cellular and/or flower-like dendritic structure, or reinforced particle-like structure indicates the possibility of SiC particle dilution within the matrix phase. The XRD analysis shows the presence of α -ferrite and martensite phases for 0 wt pct SiC reinforcement. However, cubic-SiC in combination with some metallic carbides and intermetallic phases was detected for SiC incorporation with AISI 434L steel. The fabricated composite structure exhibited high microhardness (up to 626 HV 0.05 ) and more than two times improved wear resistance than the AISI 434L SS structure. Nevertheless, a marginal reduction in the corrosion resistance was noticed in the SiC-incorporated specimens.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-024-03326-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2024-12, Vol.55 (6), p.5175-5189
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_journals_3130568406
source Springer Nature - Complete Springer Journals
subjects Accuracy
Additive manufacturing
Alloys
Arc deposition
Bonding strength
Cellular structure
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composite materials
Composite structures
Corrosion resistance
Corrosive wear
Dendritic structure
Dilution
Ferritic stainless steel
Heat conductivity
Interlayers
Intermetallic phases
Lasers
Manufacturing
Martensite
Materials Science
Mechanical properties
Metallic Materials
Microhardness
Nanotechnology
Operating costs
Original Research Article
Powder beds
Powder metallurgy
Rare gases
Raw materials
Silicon carbide
Spray forming
Stainless steels
Structural Materials
Surfaces and Interfaces
Thin Films
Thin wall structures
Wear resistance
title SiC Reinforced AISI 434L Stainless Steel Thin-Wall Structure Fabrication by TIG-Aided Powder Bed Fusion Arc Additive Manufacturing (TIG PBF-AAM) Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SiC%20Reinforced%20AISI%20434L%20Stainless%20Steel%20Thin-Wall%20Structure%20Fabrication%20by%20TIG-Aided%20Powder%20Bed%20Fusion%20Arc%20Additive%20Manufacturing%20(TIG%20PBF-AAM)%20Method&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Khan,%20M.%20D.%20Aseef&rft.date=2024-12-01&rft.volume=55&rft.issue=6&rft.spage=5175&rft.epage=5189&rft.pages=5175-5189&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-024-03326-5&rft_dat=%3Cproquest_cross%3E3130568406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130568406&rft_id=info:pmid/&rfr_iscdi=true