Computations of Stable Multiplicities in the Cohomology of Configuration Space
We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Geisler, Emil |
description | We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes or less up to cohomological degree \(50\). In particular, this determines the stable cohomology in cohomological degrees \(0 \leq i \leq 11\). We prove related qualitative results and formulate some conjectures. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130510409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130510409</sourcerecordid><originalsourceid>FETCH-proquest_journals_31305104093</originalsourceid><addsrcrecordid>eNqNi7sKwjAUQIMgWLT_EHAupEnrYw6Kiy51L2lJ21vS3Ngkg3_vAz_A6QznnAVJuBB5dig4X5HU-5Exxnd7XpYiITeJk4tBBUDrKXa0Cqoxml6jCeAMtBBAewqWhkFTiQNOaLB_flKJtoM-zt-ZVk61ekOWnTJepz-uyfZ8ustL5mZ8RO1DPWKc7VvVIheszFnBjuK_6gUPQz5_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130510409</pqid></control><display><type>article</type><title>Computations of Stable Multiplicities in the Cohomology of Configuration Space</title><source>Free E- Journals</source><creator>Geisler, Emil</creator><creatorcontrib>Geisler, Emil</creatorcontrib><description>We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes or less up to cohomological degree \(50\). In particular, this determines the stable cohomology in cohomological degrees \(0 \leq i \leq 11\). We prove related qualitative results and formulate some conjectures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Configurations ; Homology</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Geisler, Emil</creatorcontrib><title>Computations of Stable Multiplicities in the Cohomology of Configuration Space</title><title>arXiv.org</title><description>We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes or less up to cohomological degree \(50\). In particular, this determines the stable cohomology in cohomological degrees \(0 \leq i \leq 11\). We prove related qualitative results and formulate some conjectures.</description><subject>Algorithms</subject><subject>Configurations</subject><subject>Homology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sKwjAUQIMgWLT_EHAupEnrYw6Kiy51L2lJ21vS3Ngkg3_vAz_A6QznnAVJuBB5dig4X5HU-5Exxnd7XpYiITeJk4tBBUDrKXa0Cqoxml6jCeAMtBBAewqWhkFTiQNOaLB_flKJtoM-zt-ZVk61ekOWnTJepz-uyfZ8ustL5mZ8RO1DPWKc7VvVIheszFnBjuK_6gUPQz5_</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Geisler, Emil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241118</creationdate><title>Computations of Stable Multiplicities in the Cohomology of Configuration Space</title><author>Geisler, Emil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31305104093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Configurations</topic><topic>Homology</topic><toplevel>online_resources</toplevel><creatorcontrib>Geisler, Emil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geisler, Emil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Computations of Stable Multiplicities in the Cohomology of Configuration Space</atitle><jtitle>arXiv.org</jtitle><date>2024-11-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes or less up to cohomological degree \(50\). In particular, this determines the stable cohomology in cohomological degrees \(0 \leq i \leq 11\). We prove related qualitative results and formulate some conjectures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3130510409 |
source | Free E- Journals |
subjects | Algorithms Configurations Homology |
title | Computations of Stable Multiplicities in the Cohomology of Configuration Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Computations%20of%20Stable%20Multiplicities%20in%20the%20Cohomology%20of%20Configuration%20Space&rft.jtitle=arXiv.org&rft.au=Geisler,%20Emil&rft.date=2024-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130510409%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130510409&rft_id=info:pmid/&rfr_iscdi=true |