Computations of Stable Multiplicities in the Cohomology of Configuration Space

We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
1. Verfasser: Geisler, Emil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Geisler, Emil
description We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes or less up to cohomological degree \(50\). In particular, this determines the stable cohomology in cohomological degrees \(0 \leq i \leq 11\). We prove related qualitative results and formulate some conjectures.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130510409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130510409</sourcerecordid><originalsourceid>FETCH-proquest_journals_31305104093</originalsourceid><addsrcrecordid>eNqNi7sKwjAUQIMgWLT_EHAupEnrYw6Kiy51L2lJ21vS3Ngkg3_vAz_A6QznnAVJuBB5dig4X5HU-5Exxnd7XpYiITeJk4tBBUDrKXa0Cqoxml6jCeAMtBBAewqWhkFTiQNOaLB_flKJtoM-zt-ZVk61ekOWnTJepz-uyfZ8ustL5mZ8RO1DPWKc7VvVIheszFnBjuK_6gUPQz5_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130510409</pqid></control><display><type>article</type><title>Computations of Stable Multiplicities in the Cohomology of Configuration Space</title><source>Free E- Journals</source><creator>Geisler, Emil</creator><creatorcontrib>Geisler, Emil</creatorcontrib><description>We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes or less up to cohomological degree \(50\). In particular, this determines the stable cohomology in cohomological degrees \(0 \leq i \leq 11\). We prove related qualitative results and formulate some conjectures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Configurations ; Homology</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Geisler, Emil</creatorcontrib><title>Computations of Stable Multiplicities in the Cohomology of Configuration Space</title><title>arXiv.org</title><description>We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes or less up to cohomological degree \(50\). In particular, this determines the stable cohomology in cohomological degrees \(0 \leq i \leq 11\). We prove related qualitative results and formulate some conjectures.</description><subject>Algorithms</subject><subject>Configurations</subject><subject>Homology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sKwjAUQIMgWLT_EHAupEnrYw6Kiy51L2lJ21vS3Ngkg3_vAz_A6QznnAVJuBB5dig4X5HU-5Exxnd7XpYiITeJk4tBBUDrKXa0Cqoxml6jCeAMtBBAewqWhkFTiQNOaLB_flKJtoM-zt-ZVk61ekOWnTJepz-uyfZ8ustL5mZ8RO1DPWKc7VvVIheszFnBjuK_6gUPQz5_</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Geisler, Emil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241118</creationdate><title>Computations of Stable Multiplicities in the Cohomology of Configuration Space</title><author>Geisler, Emil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31305104093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Configurations</topic><topic>Homology</topic><toplevel>online_resources</toplevel><creatorcontrib>Geisler, Emil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geisler, Emil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Computations of Stable Multiplicities in the Cohomology of Configuration Space</atitle><jtitle>arXiv.org</jtitle><date>2024-11-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We describe an algorithm to compute the stable multiplicity of a family of irreducible representations in the cohomology of ordered configuration space of the plane. Using this algorithm, we compute the stable multiplicities of all families of irreducibles given by Young diagrams with \(23\) boxes or less up to cohomological degree \(50\). In particular, this determines the stable cohomology in cohomological degrees \(0 \leq i \leq 11\). We prove related qualitative results and formulate some conjectures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3130510409
source Free E- Journals
subjects Algorithms
Configurations
Homology
title Computations of Stable Multiplicities in the Cohomology of Configuration Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Computations%20of%20Stable%20Multiplicities%20in%20the%20Cohomology%20of%20Configuration%20Space&rft.jtitle=arXiv.org&rft.au=Geisler,%20Emil&rft.date=2024-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130510409%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130510409&rft_id=info:pmid/&rfr_iscdi=true